2 research outputs found

    Risk factors for Coronavirus disease 2019 (Covid-19) death in a population cohort study from the Western Cape province, South Africa

    Get PDF
    Risk factors for coronavirus disease 2019 (COVID-19) death in sub-Saharan Africa and the effects of human immunodeficiency virus (HIV) and tuberculosis on COVID-19 outcomes are unknown. We conducted a population cohort study using linked data from adults attending public-sector health facilities in the Western Cape, South Africa. We used Cox proportional hazards models, adjusted for age, sex, location, and comorbidities, to examine the associations between HIV, tuberculosis, and COVID-19 death from 1 March to 9 June 2020 among (1) public-sector “active patients” (≥1 visit in the 3 years before March 2020); (2) laboratory-diagnosed COVID-19 cases; and (3) hospitalized COVID-19 cases. We calculated the standardized mortality ratio (SMR) for COVID-19, comparing adults living with and without HIV using modeled population estimates.Among 3 460 932 patients (16% living with HIV), 22 308 were diagnosed with COVID-19, of whom 625 died. COVID19 death was associated with male sex, increasing age, diabetes, hypertension, and chronic kidney disease. HIV was associated with COVID-19 mortality (adjusted hazard ratio [aHR], 2.14; 95% confidence interval [CI], 1.70–2.70), with similar risks across strata of viral loads and immunosuppression. Current and previous diagnoses of tuberculosis were associated with COVID-19 death (aHR, 2.70 [95% CI, 1.81–4.04] and 1.51 [95% CI, 1.18–1.93], respectively). The SMR for COVID-19 death associated with HIV was 2.39 (95% CI, 1.96–2.86); population attributable fraction 8.5% (95% CI, 6.1–11.1)

    Study protocol for a phase 2A trial of the safety and tolerability of increased dose rifampicin and adjunctive linezolid, with or without aspirin, for HIV-associated tuberculous meningitis [LASER-TBM] [version 1; peer review: 2 approved]

    Get PDF
    Background: Tuberculous meningitis (TBM) is the most lethal form of tuberculosis with a mortality of ~50% in those co-infected with HIV-1. Current antibiotic regimens are based on those known to be effective in pulmonary TB and do not account for the differing ability of the drugs to penetrate the central nervous system (CNS). The host immune response drives pathology in TBM, yet effective host-directed therapies are scarce. There is sufficient data to suggest that higher doses of rifampicin (RIF), additional linezolid (LZD) and adjunctive aspirin (ASA) will be beneficial in TBM yet rigorous investigation of the safety of these interventions in the context of HIV associated TBM is required. We hypothesise that increased dose RIF, LZD and ASA used in combination and in addition to standard of care for the first 56 days of treatment with be safe and tolerated in HIV-1 infected people with TBM. Methods: In an open-label randomised parallel study, up to 100 participants will receive either; i) standard of care (n=40, control arm), ii) standard of care plus increased dose RIF (35mg/kg) and LZD (1200mg OD for 28 days, 600mg OD for 28 days) (n=30, experimental arm 1), or iii) as per experimental arm 1 plus additional ASA 1000mg OD (n=30, experimental arm 2). After 56 days participants will continue standard treatment as per national guidelines. The primary endpoint is death and the occurrence of solicited treatment-related adverse events at 56 days. In a planned pharmacokinetic (PK) sub-study we aim to assess PK/pharmacodynamic (PD) of oral vs IV rifampicin, describe LZD and RIF PK and cerebrospinal fluid concentrations, explore PK/PD relationships, and investigate drug-drug interactions between LZD and RIF. Safety and pharmacokinetic data from this study will inform a planned phase III study of intensified therapy in TBM. Clinicaltrials.gov registration: NCT03927313 (25/04/2019
    corecore