8 research outputs found
Photoionisation loading of large Sr+ ion clouds with ultrafast pulses
This paper reports on photoionisation loading based on ultrafast pulses of
singly-ionised strontium ions in a linear Paul trap. We take advantage of an
autoionising resonance of Sr neutral atoms to form Sr+ by two-photon absorption
of femtosecond pulses at a wavelength of 431nm. We compare this technique to
electron-bombardment ionisation and observe several advantages of
photoionisation. It actually allows the loading of a pure Sr+ ion cloud in a
low radio-frequency voltage amplitude regime. In these conditions up to 4x10^4
laser-cooled Sr+ ions were trapped
Cold neutral atoms via charge exchange from excited state positronium: a proposal
We present a method for generating cold neutral atoms via charge exchange
reactions between trapped ions and Rydberg positronium. The high charge
exchange reaction cross section leads to efficient neutralisation of the ions
and since the positronium-ion mass ratio is small, the neutrals do not gain
appreciable kinetic energy in the process. When the original ions are cold the
reaction produces neutrals that can be trapped or further manipulated with
electromagnetic fields. Because a wide range of species can be targeted we
envisage that our scheme may enable experiments at low temperature that have
been hitherto intractable due to a lack of cooling methods. We present an
estimate for achievable temperatures, neutral number and density in an
experiment where the neutrals are formed at a milli-Kelvin temperature from
either directly or sympathetically cooled ions confined on an ion chip. The
neutrals may then be confined by their magnetic moment in a co-located magnetic
minimum well also formed on the chip. We discuss general experimental
requirements
Suitability of linear quadrupole ion traps for large Coulomb crystals
Growing and studying large Coulomb crystals, composed of tens to hundreds of
thousands of ions, in linear quadrupole ion traps presents new challenges for
trap implementation. We consider several trap designs, first comparing the
total driven micromotion amplitude as a function of location within the
trapping volume; total micromotion is an important point of comparison since it
can limit crystal size by transfer of radiofrequency drive energy into thermal
energy. We also compare the axial component of micromotion, which leads to
first-order Doppler shifts along the preferred spectroscopy axis in precision
measurements on large Coulomb crystals. Finally, we compare trapping potential
anharmonicity, which can induce nonlinear resonance heating by shifting normal
mode frequencies onto resonance as a crystal grows. We apply a non-deforming
crystal approximation for simple calculation of these anharmonicity-induced
shifts, allowing a straightforward estimation of when crystal growth can lead
to excitation of different nonlinear heating resonances. In the axial
micromotion and anharmonicity points of comparison, we find significant
differences between the compared trap designs, with an original rotated-endcap
trap performing slightly better than the conventional in-line endcap trap
La telemanipulation dans la recherche en fusion thermonucleaire
SIGLEAvailable from British Library Document Supply Centre- DSC:4672.2625(JET-R--(89)-08) / BLDSC - British Library Document Supply CentreGBUnited Kingdo