8 research outputs found

    Photoionisation loading of large Sr+ ion clouds with ultrafast pulses

    Get PDF
    This paper reports on photoionisation loading based on ultrafast pulses of singly-ionised strontium ions in a linear Paul trap. We take advantage of an autoionising resonance of Sr neutral atoms to form Sr+ by two-photon absorption of femtosecond pulses at a wavelength of 431nm. We compare this technique to electron-bombardment ionisation and observe several advantages of photoionisation. It actually allows the loading of a pure Sr+ ion cloud in a low radio-frequency voltage amplitude regime. In these conditions up to 4x10^4 laser-cooled Sr+ ions were trapped

    Cold neutral atoms via charge exchange from excited state positronium: a proposal

    Get PDF
    We present a method for generating cold neutral atoms via charge exchange reactions between trapped ions and Rydberg positronium. The high charge exchange reaction cross section leads to efficient neutralisation of the ions and since the positronium-ion mass ratio is small, the neutrals do not gain appreciable kinetic energy in the process. When the original ions are cold the reaction produces neutrals that can be trapped or further manipulated with electromagnetic fields. Because a wide range of species can be targeted we envisage that our scheme may enable experiments at low temperature that have been hitherto intractable due to a lack of cooling methods. We present an estimate for achievable temperatures, neutral number and density in an experiment where the neutrals are formed at a milli-Kelvin temperature from either directly or sympathetically cooled ions confined on an ion chip. The neutrals may then be confined by their magnetic moment in a co-located magnetic minimum well also formed on the chip. We discuss general experimental requirements

    Suitability of linear quadrupole ion traps for large Coulomb crystals

    Full text link
    Growing and studying large Coulomb crystals, composed of tens to hundreds of thousands of ions, in linear quadrupole ion traps presents new challenges for trap implementation. We consider several trap designs, first comparing the total driven micromotion amplitude as a function of location within the trapping volume; total micromotion is an important point of comparison since it can limit crystal size by transfer of radiofrequency drive energy into thermal energy. We also compare the axial component of micromotion, which leads to first-order Doppler shifts along the preferred spectroscopy axis in precision measurements on large Coulomb crystals. Finally, we compare trapping potential anharmonicity, which can induce nonlinear resonance heating by shifting normal mode frequencies onto resonance as a crystal grows. We apply a non-deforming crystal approximation for simple calculation of these anharmonicity-induced shifts, allowing a straightforward estimation of when crystal growth can lead to excitation of different nonlinear heating resonances. In the axial micromotion and anharmonicity points of comparison, we find significant differences between the compared trap designs, with an original rotated-endcap trap performing slightly better than the conventional in-line endcap trap

    La telemanipulation dans la recherche en fusion thermonucleaire

    Full text link
    SIGLEAvailable from British Library Document Supply Centre- DSC:4672.2625(JET-R--(89)-08) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Plasma heating in JET

    Full text link
    corecore