48 research outputs found

    Spreading Dynamics of Polymer Nanodroplets

    Full text link
    The spreading of polymer droplets is studied using molecular dynamics simulations. To study the dynamics of both the precursor foot and the bulk droplet, large drops of ~200,000 monomers are simulated using a bead-spring model for polymers of chain length 10, 20, and 40 monomers per chain. We compare spreading on flat and atomistic surfaces, chain length effects, and different applications of the Langevin and dissipative particle dynamics thermostats. We find diffusive behavior for the precursor foot and good agreement with the molecular kinetic model of droplet spreading using both flat and atomistic surfaces. Despite the large system size and long simulation time relative to previous simulations, we find no evidence of hydrodynamic behavior in the spreading droplet.Comment: Physical Review E 11 pages 10 figure

    Calpain 3 Is a Rapid-Action, Unidirectional Proteolytic Switch Central to Muscle Remodeling

    Get PDF
    Calpain 3 (CAPN3) is a cysteine protease that when mutated causes Limb Girdle Muscular Dystrophy 2A. It is thereby the only described Calpain family member that genetically causes a disease. Due to its inherent instability little is known of its substrates or its mechanism of activity and pathogenicity. In this investigation we define a primary sequence motif underlying CAPN3 substrate cleavage. This motif can transform non-related proteins into substrates, and identifies >300 new putative CAPN3 targets. Bioinformatic analyses of these targets demonstrate a critical role in muscle cytoskeletal remodeling and identify novel CAPN3 functions. Among the new CAPN3 substrates are three E3 SUMO ligases of the Protein Inhibitor of Activated Stats (PIAS) family. CAPN3 can cleave PIAS proteins and negatively regulates PIAS3 sumoylase activity. Consequently, SUMO2 is deregulated in patient muscle tissue. Our study thus uncovers unexpected crosstalk between CAPN3 proteolysis and protein sumoylation, with strong implications for muscle remodeling

    Antibody isotype analysis of malaria-nematode co-infection: problems and solutions associated with cross-reactivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antibody isotype responses can be useful as indicators of immune bias during infection. In studies of parasite co-infection however, interpretation of immune bias is complicated by the occurrence of cross-reactive antibodies. To confidently attribute shifts in immune bias to the presence of a co-infecting parasite, we suggest practical approaches to account for antibody cross-reactivity. The potential for cross-reactive antibodies to influence disease outcome is also discussed.</p> <p>Results</p> <p>Utilising two murine models of malaria-helminth co-infection we analysed antibody responses of mice singly- or co-infected with <it>Plasmodium chabaudi chabaudi </it>and <it>Nippostrongylus brasiliensis </it>or <it>Litomosoides sigmodontis</it>. We observed cross-reactive antibody responses that recognised antigens from both pathogens irrespective of whether crude parasite antigen preparations or purified recombinant proteins were used in ELISA. These responses were not apparent in control mice. The relative strength of cross-reactive versus antigen-specific responses was determined by calculating antibody titre. In addition, we analysed antibody binding to periodate-treated antigens, to distinguish responses targeted to protein versus carbohydrate moieties. Periodate treatment affected both antigen-specific and cross-reactive responses. For example, malaria-induced cross-reactive IgG1 responses were found to target the carbohydrate component of the helminth antigen, as they were not detected following periodate treatment. Interestingly, periodate treatment of recombinant malaria antigen Merozoite Surface Protein-1<sub>19 </sub>(MSP-1<sub>19</sub>) resulted in increased detection of antigen-specific IgG2a responses in malaria-infected mice. This suggests that glycosylation may have been masking protein epitopes and that periodate-treated MSP-1<sub>19 </sub>may more closely reflect the natural non-glycosylated antigen seen during infection.</p> <p>Conclusions</p> <p>In order to utilize antibody isotypes as a measure of immune bias during co-infection studies, it is important to dissect antigen-specific from cross-reactive antibody responses. Calculating antibody titre, rather than using a single dilution of serum, as a measure of the relative strength of the response, largely accomplished this. Elimination of the carbohydrate moiety of an antigen that can often be the target of cross-reactive antibodies also proved useful.</p

    ილია მეორე და ვ. პატეიშვილი

    No full text
    ფოტოს გადაღების თარიღი და ადგილი უცნობიაილია მეორე (ერისკაცობაში ირაკლი გიორგის ძე ღუდუშაური-შიოლაშვილი) – ქართველი სასულიერო და საზოგადო მოღვაწე, სრულიად საქართველოს კათოლიკოს-პატრიარქი და მცხეთა-თბილისის მთავარეპისკოპოსი, ბიჭვინთისა და ცხუმ-აფხაზეთი მიტროპოლიტი. ვ. პატეიშვილი - საქართველოს ბანკის პრეზიდენტ

    LacdiNAc-glycans constitute a parasite pattern for galectin-3-mediated immune recognition

    No full text
    Although Gal beta 1-4GlcNAc (LacNAc) moieties are the most common constituents of N-linked glycans on vertebrate proteins, GalNAc beta 1-4GlcNAc (LacdiNAc, LDN)-containing glycans are widespread in invertebrates, such as helminths. We postulated that LDN might be a molecular pattern for recognition of helminth parasites by the immune system. Using LDN-based affinity chromatography and mass spectrometry, we have identified galectin-3 as the major LDN-binding protein in macrophages. By contrast, LDN binding was not observed with galectin-1. Surface plasmon resonance (SPR) analysis and a solid phase binding assay demonstrated that galectin-3 binds directly to neoglycoconjugates carrying LDN glycans. In addition, galectin-3 bound to Schistosoma mansoni soluble egg Ags and a mAb against the LDN glycan inhibited this binding, suggesting that LDN glycans within S. mansoni soluble egg Ags contribute to galectin-3 binding. Immunocytochemistry demonstrated high levels of galectin-3 in liver granulomas of S. mansoni-infected hamsters, and a colocalization of galectin-3 and LDN glycans was observed on the parasite eggshells. Finally, we demonstrate that galectin-3 can mediate recognition and phagocytosis of LDN-coated particles by macrophages. These findings provide evidence that LDN-glycans constitute a parasite pattern for galectin-3-mediated immune recognitio
    corecore