3 research outputs found
Next generation transcriptomes for next generation genomes using est2assembly
<p>Abstract</p> <p>Background</p> <p>The decreasing costs of capillary-based Sanger sequencing and next generation technologies, such as 454 pyrosequencing, have prompted an explosion of transcriptome projects in non-model species, where even shallow sequencing of transcriptomes can now be used to examine a range of research questions. This rapid growth in data has outstripped the ability of researchers working on non-model species to analyze and mine transcriptome data efficiently.</p> <p>Results</p> <p>Here we present a semi-automated platform '<it>est2assembly</it>' that processes raw sequence data from Sanger or 454 sequencing into a hybrid <it>de-novo </it>assembly, annotates it and produces GMOD compatible output, including a SeqFeature database suitable for GBrowse. Users are able to parameterize assembler variables, judge assembly quality and determine the optimal assembly for their specific needs. We used <it>est2assembly </it>to process <it>Drosophila </it>and <it>Bicyclus </it>public Sanger EST data and then compared them to published 454 data as well as eight new insect transcriptome collections.</p> <p>Conclusions</p> <p>Analysis of such a wide variety of data allows us to understand how these new technologies can assist EST project design. We determine that assembler parameterization is as essential as standardized methods to judge the output of ESTs projects. Further, even shallow sequencing using 454 produces sufficient data to be of wide use to the community. <it>est2assembly </it>is an important tool to assist manual curation for gene models, an important resource in their own right but especially for species which are due to acquire a genome project using Next Generation Sequencing.</p
Next generation transcriptomes for next generation genomes using \u3cem\u3eest2assembly\u3c/em\u3e
Background: The decreasing costs of capillary-based Sanger sequencing and next generation technologies, such as 454 pyrosequencing, have prompted an explosion of transcriptome projects in non-model species, where even shallow sequencing of transcriptomes can now be used to examine a range of research questions. This rapid growth in data has outstripped the ability of researchers working on non-model species to analyze and mine transcriptome data efficiently.
Results: Here we present a semi-automated platform \u27est2assembly\u27 that processes raw sequence data from Sanger or 454 sequencing into a hybrid de-novo assembly, annotates it and produces GMOD compatible output, including a SeqFeature database suitable for GBrowse. Users are able to parameterize assembler variables, judge assembly quality and determine the optimal assembly for their specific needs. We used est2assembly to process Drosophila and Bicyclus public Sanger EST data and then compared them to published 454 data as well as eight new insect transcriptome collections.
Conclusions: Analysis of such a wide variety of data allows us to understand how these new technologies can assist EST project design. We determine that assembler parameterization is as essential as standardized methods to judge the output of ESTs projects. Further, even shallow sequencing using 454 produces sufficient data to be of wide use to the community. est2assembly is an important tool to assist manual curation for gene models, an important resource in their own right but especially for species which are due to acquire a genome project using Next Generation Sequencing
Opportunities and limitations of milk mid-infrared spectra-based estimation of acetone and β-hydroxybutyrate for the prediction of metabolic stress and ketosis in dairy cows.
Subclinical (SCK) and clinical (CK) ketosis are metabolic disorders responsible for big losses in dairy production. Although Fourier-transform mid-infrared spectrometry (FTIR) to predict ketosis in cows exposed to great metabolic stress was studied extensively, little is known about its suitability in predicting hyperketonemia using individual samples, e.g. in small dairy herds or when only few animals are at risk of ketosis. The objective of the present research was to determine the applicability of milk metabolites predicted by FTIR spectrometry in the individual screening for ketosis. In experiment 1, blood and milk samples were taken every two weeks after calving from Holstein (n = 80), Brown Swiss (n = 72) and Swiss Fleckvieh (n = 58) cows. In experiment 2, cows diagnosed with CK (n = 474) and 420 samples with blood β-hydroxybutyrate [BHB] <1.0 mmol/l were used to investigate if CK could be detected by FTIR-predicted BHB and acetone from a preceding milk control. In experiment 3, correlations between data from an in farm automatic milk analyser and FTIR-predicted BHB and acetone from the monthly milk controls were evaluated. Hyperketonemia occurred in majority during the first eight weeks of lactation. Correlations between blood BHB and FTIR-predicted BHB and acetone were low (r = 0.37 and 0.12, respectively, P < 0.0001), as well as the percentage of true positive values (11.9 and 16.6%, respectively). No association of FTIR predicted ketone bodies with the interval of milk sampling relative to CK diagnosis was found. Data obtained from the automatic milk analyser were moderately correlated with the same day FTIR-predicted BHB analysis (r = 0.61). In conclusion, the low correlations with blood BHB and the small number of true positive samples discourage the use of milk mid-infrared spectrometry analyses as the only method to predict hyperketonemia at the individual cow level