5 research outputs found

    Surface induced magnetization reversal of MnP nanoclusters embedded in GaP

    Full text link
    We investigate the quasi-static magnetic behavior of ensembles of non-interacting ferromagnetic nanoparticles consisting of MnP nanoclusters embedded in GaP(001) epilayers grown at 600, 650 and 700{\deg}C. We use a phenomenological model, in which surface effects are included, to reproduce the experimental hysteresis curves measured as a function of temperature (120-260 K) and direction of the applied field. The slope of the hysteresis curve during magnetization reversal is determined by the MnP nanoclusters size distribution, which is a function of the growth temperature. Our results show that the coercive field is very sensitive to the strength of the surface anisotropy, which reduces the energy barrier between the two states of opposite magnetization. Notably, this reduction in the energy barrier increases by a factor of 3 as the sample temperature is lowered from 260 to 120 K.Comment: 7 pages, 5 figure

    Carrier thermal escape in families of InAs/InP self-assembled quantum dots

    Full text link
    We investigate the thermal quenching of the multimodal photoluminescence from InAs/InP (001) self-assembled quantum dots. The temperature evolution of the photoluminescence spectra of two samples is followed from 10 K to 300 K. We develop a coupled rate-equation model that includes the effect of carrier thermal escape from a quantum dot to the wetting layer and to the InP matrix, followed by transport, recapture or non-radiative recombination. Our model reproduces the temperature dependence of the emission of each family of quantum dots with a single set of parameters. We find that the main escape mechanism of the carriers confined in the quantum dots is through thermal emission to the wetting layer. The activation energy for this process is found to be close to one-half the energy difference between that of a given family of quantum dots and that of the wetting layer as measured by photoluminescence excitation experiments. This indicates that electron and holes exit the InAs quantum dots as correlated pairs
    corecore