1,621 research outputs found

    Bulk Connectedness and Boundary Entanglement

    Get PDF
    We prove, for any state in a conformal field theory defined on a set of boundary manifolds with corresponding classical holographic bulk geometry, that for any bipartition of the boundary into two non-clopen sets, the density matrix cannot be a tensor product of the reduced density matrices on each region of the bipartition. In particular, there must be entanglement across the bipartition surface. We extend this no-go theorem to general, arbitrary partitions of the boundary manifolds into non-clopen parts, proving that the density matrix cannot be a tensor product. This result gives a necessary condition for states to potentially correspond to holographic duals.Comment: 12 pages, 2 figure

    Hidden Simplicity of the Gravity Action

    Get PDF
    We derive new representations of the Einstein-Hilbert action in which graviton perturbation theory is immensely simplified. To accomplish this, we recast the Einstein-Hilbert action as a theory of purely cubic interactions among gravitons and a single auxiliary field. The corresponding equations of motion are the Einstein field equations rewritten as two coupled first-order differential equations. Since all Feynman diagrams are cubic, we are able to derive new off-shell recursion relations for tree-level graviton scattering amplitudes. With a judicious choice of gauge fixing, we then construct an especially compact form for the Einstein-Hilbert action in which all graviton interactions are simply proportional to the graviton kinetic term. Our results apply to graviton perturbations about an arbitrary curved background spacetime.Comment: 20 pages, 1 figur

    Infrared Consistency and the Weak Gravity Conjecture

    Get PDF
    The weak gravity conjecture (WGC) asserts that an Abelian gauge theory coupled to gravity is inconsistent unless it contains a particle of charge qq and mass mm such that q≥m/mPlq \geq m/m_{\rm Pl}. This criterion is obeyed by all known ultraviolet completions and is needed to evade pathologies from stable black hole remnants. In this paper, we explore the WGC from the perspective of low-energy effective field theory. Below the charged particle threshold, the effective action describes a photon and graviton interacting via higher-dimension operators. We derive infrared consistency conditions on the parameters of the effective action using i) analyticity of light-by-light scattering, ii) unitarity of the dynamics of an arbitrary ultraviolet completion, and iii) absence of superluminality and causality violation in certain non-trivial backgrounds. For convenience, we begin our analysis in three spacetime dimensions, where gravity is non-dynamical but has a physical effect on photon-photon interactions. We then consider four dimensions, where propagating gravity substantially complicates all of our arguments, but bounds can still be derived. Operators in the effective action arise from two types of diagrams: those that involve electromagnetic interactions (parameterized by a charge-to-mass ratio q/mq/m) and those that do not (parameterized by a coefficient γ\gamma). Infrared consistency implies that q/mq/m is bounded from below for small γ\gamma.Comment: 37 pages, 5 figures. Minor typos fixed and equation numbers changed to match journal. Published in JHE

    Quantum Gravity Constraints from Unitarity and Analyticity

    Get PDF
    We derive rigorous bounds on corrections to Einstein gravity using unitarity and analyticity of graviton scattering amplitudes. In D≥4D\geq 4 spacetime dimensions, these consistency conditions mandate positive coefficients for certain quartic curvature operators. We systematically enumerate all such positivity bounds in D=4D=4 and D=5D=5 before extending to D≥6D\geq 6. Afterwards, we derive positivity bounds for supersymmetric operators and verify that all of our constraints are satisfied by weakly-coupled string theories. Among quadratic curvature operators, we find that the Gauss-Bonnet term in D≥5D\geq 5 is inconsistent unless new degrees of freedom enter at the natural cutoff scale defined by the effective theory. Our bounds apply to perturbative ultraviolet completions of gravity.Comment: 26 page

    Proof of the Weak Gravity Conjecture from Black Hole Entropy

    Get PDF
    We prove that higher-dimension operators contribute positively to the entropy of a thermodynamically stable black hole at fixed mass and charge. Our results apply whenever the dominant corrections originate at tree level from quantum field theoretic dynamics. More generally, positivity of the entropy shift is equivalent to a certain inequality relating the free energies of black holes. These entropy inequalities mandate new positivity bounds on the coefficients of higher-dimension operators. One of these conditions implies that the charge-to-mass ratio of an extremal black hole asymptotes to unity from above for increasing mass. Consequently, large extremal black holes are unstable to decay to smaller extremal black holes and the weak gravity conjecture is automatically satisfied. Our findings generalize to arbitrary spacetime dimension and to the case of multiple gauge fields. The assumptions of this proof are valid across a range of scenarios, including string theory constructions with a dilaton stabilized below the string scale.Comment: 35 pages, 2 figure

    Splitting Spacetime and Cloning Qubits: Linking No-Go Theorems across the ER=EPR Duality

    Get PDF
    We analyze the no-cloning theorem in quantum mechanics through the lens of the proposed ER=EPR (Einstein-Rosen = Einstein-Podolsky-Rosen) duality between entanglement and wormholes. In particular, we find that the no-cloning theorem is dual on the gravity side to the no-go theorem for topology change, violating the axioms of which allows for wormhole stabilization and causality violation. Such a duality between important no-go theorems elucidates the proposed connection between spacetime geometry and quantum entanglement.Comment: 6 pages, 2 figure

    Entanglement Conservation, ER=EPR, and a New Classical Area Theorem for Wormholes

    Get PDF
    We consider the question of entanglement conservation in the context of the ER=EPR correspondence equating quantum entanglement with wormholes. In quantum mechanics, the entanglement between a system and its complement is conserved under unitary operations that act independently on each; ER=EPR suggests that an analogous statement should hold for wormholes. We accordingly prove a new area theorem in general relativity: for a collection of dynamical wormholes and black holes in a spacetime satisfying the null curvature condition, the maximin area for a subset of the horizons (giving the largest area attained by the minimal cross section of the multi-wormhole throat separating the subset from its complement) is invariant under classical time evolution along the outermost apparent horizons. The evolution can be completely general, including horizon mergers and the addition of classical matter satisfying the null energy condition. This theorem is the gravitational dual of entanglement conservation and thus constitutes an explicit characterization of the ER=EPR duality in the classical limit.Comment: 16 pages, 2 figure

    Entanglement of Purification and Multiboundary Wormhole Geometries

    Get PDF
    We posit a geometrical description of the entanglement of purification for subregions in a holographic CFT. The bulk description naturally generalizes the two-party case and leads to interesting inequalities among multi-party entanglements of purification that can be geometrically proven from the conjecture. Further, we study the relationship between holographic entanglements of purification in locally-AdS3 spacetimes and entanglement entropies in multi-throated wormhole geometries constructed via quotienting by isometries. In particular, we derive new holographic inequalities for geometries that are locally AdS3 relating entanglements of purification for subregions and entanglement entropies in the wormhole geometries.Comment: 23 pages, 12 figures; v2 added references; v3 fixed inequality direction in Eq.(2), expanded discussion - reflects published versio
    • …
    corecore