10 research outputs found

    HIV pre-exposure prophylaxis: Mucosal tissue drug distribution of RT inhibitor Tenofovir and entry inhibitor Maraviroc in a humanized mouse model

    Get PDF
    Pre-exposure prophylaxis (PrEP) strategies utilizing anti-retroviral drugs show considerable promise for HIV prevention. However there is insufficient pharmacokinetic (PK) data on drug concentrations required for protection at the relevant mucosal tissues where the infection is initiated. Here we evaluated the utility of a humanized mouse model to derive PK data on two leading drugs, the RT inhibitor tenofovir (TFV) and CCR5 inhibitor maraviroc (MVC). Following oral dosing, both the drugs and the intracellular active TFV-diphosphate could be detected in vaginal, rectal and intestinal tissues. The drug exposures (AUC24hr) were found to be higher in vaginal tissue compared to plasma with even higher levels detected in rectal and intestinal tissues. The overall trends of drug concentrations seen in humanized mice reflect those seen in the human thus establishing the utility of this model complementing the present non-human primate (NHP) models for future pre-clinical evaluations of promising HIV PrEP drug candidates

    Multimodal analysis of drug transporter expression in gastrointestinal tissue

    Get PDF
    Objectives: Drug transporters affect antiretroviral therapy (ART) tissue disposition, but quantitative measures of drug transporter protein expression across preclinical species are not available. Our objective was to use proteomics to obtain absolute transporter concentrations and assess agreement with corresponding gene and immunometric protein data. Design: In order to make interspecies comparisons, two humanized mouse [hu-HSC-Rag (n = 41); bone marrow-liver-thymus (n = 13)] and one primate [rhesus macaque (nonhuman primate, n = 12)] models were dosed to steady state with combination ART. Ileum and rectum were collected at necropsy and snap frozen for analysis. Methods: Tissues were analyzed for gene (quantitative PCR) and protein [liquid chromatography-mass spectrometry (LC-MS) proteomics and western blot] expression and localization (immunohistochemistry) of ART efflux and uptake transporters. Drug concentrations were measured by LC-MS/MS. Multivariable regression was used to determine the ability of transporter data to predict tissue ART penetration. Results: Analytical methods did not agree, with different trends observed for gene and protein expression. For example, quantitative PCR analysis showed a two-fold increase in permeability glycoprotein expression in nonhuman primates versus mice; however, proteomics showed a 200-fold difference in the opposite direction. Proteomics results were supported by immunohistochemistry staining showing extensive efflux transporter localization on the luminal surface of these tissues. ART tissue concentration was variable between species, and multivariable regression showed poor predictive power of transporter data. Conclusion: Lack of agreement between analytical techniques suggests that resources should be focused on generating downstream measures of protein expression to predict drug exposure. Taken together, these data inform the use of preclinical models for studying ART distribution and the design of targeted therapies for HIV eradication

    076 - James Zachary Curlin

    Full text link
    Human Immunodeficiency Virus (HIV) is believed to have arisen in humans as a result of multiple independent cross-species exposures to Simian Immunodeficiency Viruses. Here the serial passaging of SIV in humanized mice across several generations recapitulates the genetic changes that make have facilitated such cross-species transmissions. Viral adaptation to the hu-mice was determined via qRT-PCR analysis of plasma viral loads and observation of CD4+ T-cell depletion. SIVs at various stages of adaptation from different generations were analyzed through Next Generation Sequencing (NGS). Many non-synonymous mutations were observed across each passage that may be responsible for improved cross-species transmission and adaptation

    A humanized mouse-based HIV-1 viral outgrowth assay with higher sensitivity than in vitro qVOA in detecting latently infected cells from individuals on ART with undetectable viral loads.

    Full text link
    Assays that can verify full viral eradication are essential in the context of achieving a cure for HIV/AIDS. In vitro quantitative viral out growth assays (qVOA) are currently the gold standard for measuring latent HIV-1 but these assays often fail to detect very low levels of replication-competent virus. Here we investigated an alternative in vivo approach for sensitive viral detection using humanized mice (hmVOA). Peripheral blood CD4+ T cell samples from HIV subjects on stable ART with undetectable viral loads by RT-PCR were first assayed by in vitro qVOA. Corresponding patient samples in which no virus was detected by qVOA were injected into humanized mice to allow viral outgrowth. Of the five qVOA virus negative samples, four gave positive viral outgrowth in the hmVOA assay suggesting that it is more sensitive in detecting latent HIV-1

    Antiretroviral concentrations and surrogate measures of efficacy in the brain tissue and CSF of preclinical species

    Full text link
    1. Antiretroviral concentrations in cerebrospinal fluid (CSF) are used as surrogate for brain tissue, although sparse data support this. We quantified antiretrovirals in brain tissue across preclinical models, compared them to CSF, and calculated 90% inhibitory quotients (IQ90) for nonhuman primate (NHP) brain tissue. Spatial distribution of efavirenz was performed by mass-spectrometry imaging (MSI). 2. HIV or RT-SHIV-infected and uninfected animals from two humanized mouse models (hemopoietic-stem cell/RAG2-, n = 36; bone marrow-liver-thymus/BLT, n =13) and an NHP model (rhesus macaque, n =18) were dosed with six antiretrovirals. Brain tissue, CSF (NHPs), and plasma were collected at necropsy. Drug concentrations were measured by LC-MS/MS. Rapid equilibrium dialysis determined protein binding in NHP brain. 3. Brain tissue penetration of most antiretrovirals were \u3e10-fold lower (p \u3c 0.02) in humanized mice than NHPs. NHP CSF concentrations were \u3e13-fold lower (p \u3c0.02) than brain tissue with poor agreement except for efavirenz (r = 0.91, p = 0.001). Despite 97% brain tissue protein binding, efavirenz achieved IQ90\u3e1 in all animals and 2-fold greater white versus gray matter concentration. 4. Brain tissue penetration varied across animal models for all antiretrovirals except raltegravir, and extrapolating brain tissue concentrations between models should be avoided. With the exception of efavirenz, CSF is not a surrogate for brain tissue concentrations
    corecore