3 research outputs found

    The Morphology and Microstructure of Oxide Scale Grown on Austenitic Steel during Steam Oxidation at 700 °C for 500 h

    No full text
    The modern power generation industry needs materials able to withstand severe conditions, such as high temperatures, steam pressure, and an aggressive environment, to create more electric power out of a decreasing amount of fuel. Therefore, new metallic materials are continuously being developed. In order to gain knowledge about modern materials, the investigation of high Cr and Ni austenitic steel oxidized in 100% steam at 700 °C for 500 h was performed. The morphology, the phase composition, and the chemical composition of the oxidation products were investigated through methods of advanced electron microscopy techniques. Moreover, precipitates present in bulk material were identified. The material developed a continuous and complex oxide scale, consisting of Fe2O3, Cr2O3, and spinel phases. Very fine MX, fine ε-Cu, and M23C6 precipitates were found in the bulk material. The creation of iron oxide is induced due to the coarse grain size of the material. Cr2O3 forms due to the internal oxidation process

    The Phenomenon of the “First Stress Peak” at the Yielding in the Dynamic Compression Tests of FCC and BCC Microalloyed Structures

    No full text
    In the presented work two grades of steel i.e. microalloyed ferrite (M_F) and microalloyed austenite (M_A) where subjected to the grain refinement processes using MaxStrain system and thermomechanical rolling. The wide range of grain size, starting from 200 µm down to submicrometer level was produced in this way. The specimens of both steels were subjected to the dynamic compression tests using the Split Hopkinson Pressure Bar (SHPB) apparatus and applying the strain rates in the range between ε˙ = 3750s-1 and ε˙ = 6000s-1. In addition, different temperatures were used in the tests, i.e.200 °C and 400 °C. The first peak of stress which is observed during elastic-plastic transition during the dynamic compression tests can be treated as a characteristic feature of the tested material. The results obtained in the present investigations showed a significant dependence of the “first stress peak” in the dynamic compression curve on the degree of the microstructure refinement for the samples of M_F and almost complete absence of this dependence for M_A

    How the Thermomechanical Processing Can Modify the High Strain Rate Mechanical Response of a Microalloyed Steel

    No full text
    The effects of thermomechanical processing (TMP) on the mechanical response of microalloyed steels subjected to dynamic loading conditions were examined. The deformation conditions in the thermomechanical laboratory rolling processes were selected on the basis of dilatometric tests. It allowed (with a constant value of total deformation) us to obtain microstructures with different compositions and morphology of the particular components. Several samples characterized by a particularly complex and unexpected representation of the obtained microstructures were selected for further research. Plastometric tests, i.e., compression and tensile tests, were performed under quasi-static loading with digital image correlation (DIC) analysis, and under dynamic loading on the Split Hopkinson Pressure Bar (SHPB) apparatus with strain rates of 1400 and 2000 s−1. Samples deformed in such conditions were subjected to microstructural analysis and hardness measurements. It has been observed that the use of various combinations of TMP parameters can result in the formation of specific microstructures, which in turn are the source of an attractive mechanical response under dynamic loading conditions. This opens up new possible areas of application for such popular structural materials which are microalloyed steels
    corecore