5 research outputs found

    Sclerostin Downregulation Globally by Naturally Occurring Genetic Variants, or Locally in Atherosclerotic Plaques, Does Not Associate With Cardiovascular Events in Humans

    Get PDF
    Inhibition of sclerostin increases bone formation and decreases bone resorption, leading to increased bone mass, bone mineral density, and bone strength and reduced fracture risk. In a clinical study of the sclerostin antibody romosozumab versus alendronate in postmenopausal women (ARCH), an imbalance in adjudicated serious cardiovascular (CV) adverse events driven by an increase in myocardial infarction (MI) and stroke was observed. To explore whether there was a potential mechanistic plausibility that sclerostin expression, or its inhibition, in atherosclerotic (AS) plaques may have contributed to this imbalance, sclerostin was immunostained in human plaques to determine whether it was detected in regions relevant to plaque stability in 94 carotid and 50 femoral AS plaques surgically collected from older female patients (mean age 69.6 ± 10.4 years). Sclerostin staining was absent in most plaques (67%), and when detected, it was of reduced intensity compared with normal aorta and was located in deeper regions of the plaque/wall but was not observed in areas considered relevant to plaque stability (fibrous cap and endothelium). Additionally, genetic variants associated with lifelong reduced sclerostin expression were explored for associations with phenotypes including those related to bone physiology and CV risk factors/events in a population-based phenomewide association study (PheWAS). Natural genetic modulation of sclerostin by variants with a significant positive effect on bone physiology showed no association with lifetime risk of MI or stroke. These data do not support a causal association between the presence of sclerostin, or its inhibition, in the vasculature and increased risk of serious cardiovascular events

    Historical Missionary Activity, Schooling, and the Reversal of Fortunes: Evidence from Nigeria

    Get PDF
    This paper shows that historical missionary activity has had a persistent effect on schooling outcomes, and contributed to a reversal of fortunes wherein historically richer ethnic groups are poorer today. Combining contemporary individual-level data with a newly constructed dataset on mission stations in Nigeria, we find that individuals whose ancestors were exposed to greater missionary activity have higher levels of schooling. This effect is robust to omitted heterogeneity, ethnicity fixed effects, and reverse causation. We find inter-generational factors and the persistence of early advantages in educational infrastructure to be key channels through which the effect has persisted. Consistent with theory, the effect of missions on current schooling is larger for population subgroups that have historically suffered disadvantages in access to education

    Interleukin (IL)-12 and IL-18 Synergize to Promote MAIT Cell IL-17A and IL-17F Production Independently of IL-23 Signaling

    No full text
    IL-23 is considered a critical regulator of IL-17 in Th17 cells; however, its requirement for inducing IL-17 production in other human immune subsets remains incompletely understood. Mucosal associated invariant T (MAIT) cells uniformly express retinoic acid receptor-related orphan receptor gamma t (RORγt) but only a minor population have been shown to produce IL-17A. Here we show that IL-17F is the dominant IL-17 isoform produced by MAIT cells, not IL-17A. For optimal MAIT cell derived IL-17A and IL-17F production, T cell receptor (TCR) triggering, IL-18 and monocyte derived IL-12 signaling is required. Unlike Th17 cells, this process is independent of IL-23 signaling. Using an in vitro skin cell activation assay, we demonstrate that dual neutralization of both IL-17A and IL-17F resulted in greater suppression of inflammatory proteins than inhibition of IL-17A alone. Finally, we extend our findings by showing that other innate-like lymphocytes such as group 3 innate lymphoid cells (ILC3) and gamma delta (γδ) T cells are also capable of IL-23 independent IL-17A and IL-17F production. These data indicate both IL-17F and IL-17A production from MAIT cells may contribute to tissue inflammation independently of IL-23, in part explaining the therapeutic disconnect between targeting IL-17 or IL-23 in certain inflammatory diseases
    corecore