268 research outputs found

    Ecological approaches to human nutrition

    Get PDF
    Malnutrition affects a large number of people throughout the developing world. Approaches to reducing malnutrition rarely focus on ecology and agriculture to simultaneously improve human nutrition and environmental sustainability. However, evidence suggests that interdisciplinary approaches that combine the knowledge bases of these disciplines can serve as a central strategy in alleviating hidden hunger for the world's poorest. To describe the role that ecological knowledge plays in alleviating hidden hunger, considering human nutrition as an overlooked ecosystem service. We review existing literature and propose a framework that expands on earlier work on econutri-tion. We provide novel evidence from case studies con-ducted by the authors in western Kenya and propose a framework for interdisciplinary collaboration to alleviate hidden hunger, increase agricultural productivity, and improve environmental sustainability. Our review supports the concept that an inte-grated approach will impact human nutrition. We pro-vide evidence that increased functional agrobiodiversity can alleviate anemia, and interventions that contribute to environmental sustainability can have both direct and indirect effects on human health and nutritional well-being. Integrated and interdisciplinary approaches are critical to reaching development goals. Ecologists must begin to consider not only how their field can contribute to biodiversity conservation, but also, the relationship between biodiversity and provisioning of nontraditional ecosystem services such as human health. Likewise, nutritionists and agronomists must recognize that many of the solutions to increasing human well-being and health can best be achieved by focusing on a healthy environment and the conservation of ecosystem services

    Towards an agrobiodiversity index for sustainable food systems

    Get PDF

    Agricultural biodiversity and food system sustainability

    Get PDF

    A multi-objective model exploration of banana-canopy management and nutrient input scenarios for optimal banana-legume intercrop performance

    Get PDF
    Open Access Journal; Published online: 10 Feb 2021Bananas on smallholder farmers in the African Great Lakes region are often pruned to illuminate shorter understory intercrops, reducing overall farm profitability. The impact of this practice on environmental and nutritional indicators are not known. This study determined the effect of this practice on operating profit, protein yield, soil organic matter (SOM) balance, and nitrogen input; and the management options for optimal performance of the intercrops. Alternative scenarios for improving soil nutrient balances of the system were also explored. Data from an experiment intercropping bush beans with banana at three leaf pruning levels (i.e., retaining all, seven, and four leaves) was used as the input for the multi-objective optimization FarmDESIGN model. Retention of four functional leaves mimicked a worst-case scenario observed on farms. Banana and bush bean monocrops served as controls. The model maximized operating profit, protein yield, and SOM, and minimized nitrogen input. Nutrient input scenarios in which (i) farmyard manure was only applied at planting (business as usual (‘BaU’)); and ‘BaU’, was combined with (ii) hedges, (iii) inorganic fertilizers, (iv) hedges and goat manure, (v) hedges and inorganic fertilizers, (vi) inorganic fertilizers and goat manure, and (vii) hedges, inorganic fertilizers, and goat manure, were also explored. Severe banana leaf pruning reduced profitability, SOM, and protein yield, although it’s less nutrient demanding. In contrast, the “un-pruned banana-bush bean intercrop” and “sole banana crop” had a higher profitability, SOM balance, and protein yield, whereas they demand more soil nutrients. No profound improvements in operating profit, SOM balance, and protein yield occurred for ‘BaU’, while hedges resulted in mild improvements. Profound improvements in all objectives occurred with the addition of the inorganic fertilizers, while goat manure resulted in a high SOM balance and N input. For ‘BaU’ and hedges, “severely pruned banana-bush bean intercrop” dominated the optimal solution set for improving farm performance. In contrast, when the inorganic fertilizers and/or goat manure was introduced, “un-pruned banana-bush bean intercrop” and/or “sole un-pruned banana crop” were the optimal solutions. The study confirms severe leaf pruning to negatively impact profitability, while the more profitable un-pruned crop options are unsustainable without external input of nutrients. Thus, investments in external inputs are crucial for a sustainable banana-intercrop system. The FarmDESIGN model made the trade-offs and synergies in this complex intercrop system explicit, thus was also helpful for field-level decision making

    Device-independent, real-time identification of bacterial pathogens with a metal oxide-based olfactory sensor

    Get PDF
    A novel olfactory method for bacterial species identification using an electronic nose device called the MonoNose was developed. Differential speciation of micro-organisms present in primary cultures of clinical samples could be performed by real-time identification of volatile organic compounds (VOCs) produced during microbial replication. Kinetic measurements show that the dynamic changes in headspace gas composition are orders of magnitude larger than the static differences at the end of fermentation. Eleven different, clinically relevant bacterial species were included in this study. For each of the species, two to eight different strains were used to take intra-species biodiversity into account. A total of 52 different strains were measured in an incubator at 37°C. The results show that the diagnostic specificities varied from 100% for Clostridium difficile to 67% for Enterobacter cloacae with an overall average of 87%. Pathogen identification with a MonoNose can be achieved within 6–8 h of inoculation of the culture broths. The diagnostic specificity can be improved by broth modification to improve the VOC production of the pathogens involved

    Farming and the geography of nutrient production for human use: a transdisciplinary analysis

    Get PDF
    Background: Information about the global structure of agriculture and nutrient production and its diversity is essential to improve present understanding of national food production patterns, agricultural livelihoods, and food chains, and their linkages to land use and their associated ecosystems services. Here we provide a plausible breakdown of global agricultural and nutrient production by farm size, and also study the associations between farm size, agricultural diversity, and nutrient production. This analysis is crucial to design interventions that might be appropriately targeted to promote healthy diets and ecosystems in the face of population growth, urbanisation, and climate change. Methods: We used existing spatially-explicit global datasets to estimate the production levels of 41 major crops, seven livestock, and 14 aquaculture and fish products. From overall production estimates, we estimated the production of vitamin A, vitamin B₁₂, folate, iron, zinc, calcium, calories, and protein. We also estimated the relative contribution of farms of different sizes to the production of different agricultural commodities and associated nutrients, as well as how the diversity of food production based on the number of different products grown per geographic pixel and distribution of products within this pixel (Shannon diversity index [H]) changes with different farm sizes. Findings: Globally, small and medium farms (≀50 ha) produce 51–77% of nearly all commodities and nutrients examined here. However, important regional differences exist. Large farms (>50 ha) dominate production in North America, South America, and Australia and New Zealand. In these regions, large farms contribute between 75% and 100% of all cereal, livestock, and fruit production, and the pattern is similar for other commodity groups. By contrast, small farms (≀20 ha) produce more than 75% of most food commodities in sub-Saharan Africa, southeast Asia, south Asia, and China. In Europe, west Asia and north Africa, and central America, medium-size farms (20–50 ha) also contribute substantially to the production of most food commodities. Very small farms (≀2 ha) are important and have local significance in sub-Saharan Africa, southeast Asia, and south Asia, where they contribute to about 30% of most food commodities. The majority of vegetables (81%), roots and tubers (72%), pulses (67%), fruits (66%), fish and livestock products (60%), and cereals (56%) are produced in diverse landscapes (H>1·5). Similarly, the majority of global micronutrients (53–81%) and protein (57%) are also produced in more diverse agricultural landscapes (H>1·5). By contrast, the majority of sugar (73%) and oil crops (57%) are produced in less diverse ones (H≀1·5), which also account for the majority of global calorie production (56%). The diversity of agricultural and nutrient production diminishes as farm size increases. However, areas of the world with higher agricultural diversity produce more nutrients, irrespective of farm size. Interpretation: Our results show that farm size and diversity of agricultural production vary substantially across regions and are key structural determinants of food and nutrient production that need to be considered in plans to meet social, economic, and environmental targets. At the global level, both small and large farms have key roles in food and nutrition security. Efforts to maintain production diversity as farm sizes increase seem to be necessary to maintain the production of diverse nutrients and viable, multifunctional, sustainable landscapes. Funding: Commonwealth Scientific and Industrial Research Organisation, Bill & Melinda Gates Foundation, CGIAR Research Programs on Climate Change, Agriculture and Food Security and on Agriculture for Nutrition and Health funded by the CGIAR Fund Council, Daniel and Nina Carasso Foundation, European Union, International Fund for Agricultural Development, Australian Research Council, National Science Foundation, Gordon and Betty Moore Foundation, and Joint Programming Initiative on Agriculture, Food Security and Climate Change—Belmont Forum

    Measuring agricultural biodiversity for sustainable food systems

    Get PDF
    Today, global food production is the largest driver of environmental degradation and biodiversity loss (Willett et al. 2019). Rising global food demand and limited arable land are pushing us to expand agricultural frontiers and production. This often happens without regard to the environment, causing biodiversity loss, land and water degradation (Bioversity International 2017) Climate change is accelerating biodiversity loss. Higher temperatures disrupt pollination and natural pest control, affecting food quality (Food and Agriculture Organization of the UN 2017).Equally, the need to feed an additional 2 billion people by 2050 is pushing us to increase yields in a few staple foods, which erodes food and genetic diversity. Biodiversity loss in food systems leaves farmers with fewer options to deal with risks of crop failure, declining soil fertility, or increasingly variable weather (Bioversity International 2017), causing production losses, food insecurity and malnutrition(FAO, IFAD, UNICEF, WFP WHO 2018).The way we produce and consume our food is hurting both people and the planet. This calls upon all of us, from governments to producers to consumers, to put biodiversity back into food (World Economic Forum (WEF) 2017).Food and - more broadly - agricultural biodiversity are essential for sustainable food systems. Agrobiodiversity boosts productivity and nutrition quality, increases soil and water quality, and reduces the need for synthetic fertilizers. It makes farmers’ livelihoods more resilient, reducing yield losses due to climate change and pest damage. Broadening the types of cultivated plants also benefits the environment, increasing the abundance of pollinators and beneficial soil organisms, and reducing the risk of pest epidemics.To sustainably use and conserve agrobiodiversity, governments need dedicated, multi-sectoral and evidence-based policies and strategies. From smallholder farmers to multinational companies, food producers are becoming increasingly important in conserving genetic resources and adopting sustainable agricultural practices. Consumers need to become more aware of the impact of their food choices on the planet and their role in preserving the environment.What actions do we need to put in place to make change happen? To answer, we need to be able to measure biodiversity in food systems. While decades of effort have advanced our understanding of sustainable food systems, biodiversity data remain uneven and oftentimes information is analyzed from sectoral perspectives (i.e.: production, consumption or conservation). To transform food systems, we need to look at the broader picture and understand the systemic linkages between biodiversity, food security and nutrition, agricultural production, and the environment.Bioversity International has developed the Agrobiodiversity Index, an innovative tool that brings together existing data on diets and markets, production and genetic resources, analyzing them under the lens of agricultural biodiversity (Bioversity International 2018). Through open access to agricultural biodiversity data for science and society, the tool crosses disciplinary boundaries and allows users to monitor biodiversity trends in food systems. In particular, it helps food systems actors to measure agrobiodiversity in a selected area or value chain, and understand to what extent their commitments and actions are contributing to its sustainable use and conservation.This user-friendly tool equips food systems actors with the data needed to make informed decisions. For example, it helps governments to formulate evidence-based agricultural, health and food policies and strategies to address today’s global challenges, by providing information on how biological and geographical diversity influence food systems sustainability. Through the Index, companies can understand how to diversify their supply chain and production to reduce risks, and what are the best agricultural practices for their agro-ecological zone. The tool can thereby support best practices dissemination, and track progress towards global goals related to agrobiodiversity, including Sustainable Development Goals 3, 12, 13, 15 and Aichi targets 7

    Dietary calcium and zinc deficiency risks are decreasing but remain prevalent

    Get PDF
    Globally, more than 800 million people are undernourished while >2 billion people have one or more chronic micronutrient deficiencies (MNDs). More than 6% of global mortality and morbidity burdens are associated with undernourishment and MNDs. Here we show that, in 2011, 3.5 and 1.1 billion people were at risk of calcium (Ca) and zinc (Zn) deficiency respectively due to inadequate dietary supply. The global mean dietary supply of Ca and Zn in 2011 was 684 ± 211 and 16 ± 3 mg capita−1 d−1 (±SD) respectively. Between 1992 and 2011, global risk of deficiency of Ca and Zn decreased from 76 to 51%, and 22 to 16%, respectively. Approximately 90% of those at risk of Ca and Zn deficiency in 2011 were in Africa and Asia. To our knowledge, these are the first global estimates of dietary Ca deficiency risks based on food supply. We conclude that continuing to reduce Ca and Zn deficiency risks through dietary diversification and food and agricultural interventions including fortification, crop breeding and use of micronutrient fertilisers will remain a significant challenge
    • 

    corecore