608 research outputs found

    Detection and identification of previously unrecognized microbial pathogens.

    Get PDF
    Features of a number of important but poorly explained human clinical syndromes strongly indicate a microbial etiology. In these syndromes, the failure of cultivation-dependent microbial detection methods reveals our ignorance of microbial growth requirements. Sequence-based molecular methods, however, offer alternative approaches for microbial identification directly from host specimens found in the setting of unexplained acute illnesses, chronic inflammatory disease, and from anatomic sites that contain commensal microflora. The rapid expansion of genome sequence databases and advances in biotechnology present opportunities and challenges: identification of consensus sequences from which reliable, specific phylogenetic information can be inferred for all taxonomic groups of pathogens, broad-range pathogen identification on the basis of virulence-associated gene families, and use of host gene expression response profiles as specific signatures of microbial infection

    Using DNA microarrays to study host-microbe interactions.

    Get PDF
    Complete genomic sequences of microbial pathogens and hosts offer sophisticated new strategies for studying host-pathogen interactions. DNA microarrays exploit primary sequence data to measure transcript levels and detect sequence polymorphisms, for every gene, simultaneously. The design and construction of a DNA microarray for any given microbial genome are straightforward. By monitoring microbial gene expression, one can predict the functions of uncharacterized genes, probe the physiologic adaptations made under various environmental conditions, identify virulence-associated genes, and test the effects of drugs. Similarly, by using host gene microarrays, one can explore host response at the level of gene expression and provide a molecular description of the events that follow infection. Host profiling might also identify gene expression signatures unique for each pathogen, thus providing a novel tool for diagnosis, prognosis, and clinical management of infectious disease

    Rhinosporidium seeberi: a human pathogen from a novel group of aquatic protistan parasites.

    Get PDF
    Rhinosporidium seeberi, a microorganism that can infect the mucosal surfaces of humans and animals, has been classified as a fungus on the basis of morphologic and histochemical characteristics. Using consensus polymerase chain reaction (PCR), we amplified a portion of the R. seeberi 18S rRNA gene directly from infected tissue. Analysis of the aligned sequence and inference of phylogenetic relationships showed that R. seeberi is a protist from a novel clade of parasites that infect fish and amphibians. Fluorescence in situ hybridization and R. seeberi- specific PCR showed that this unique 18S rRNA sequence is also present in other tissues infected with R. seeberi. Our data support the R. seeberi phylogeny recently suggested by another group. R. seeberi is not a classic fungus, but rather the first known human pathogen from the DRIPs clade, a novel clade of aquatic protistan parasites (Ichthyosporea)

    Neisseria gonorrhoeae false-positive result obtained from a pharyngeal swab by using the roche cobas 4800 CT/NG assay in New Zealand in 2012

    Get PDF
    The Roche cobas 4800 CT/NG assay is a commonly used commercial system for screening for Neisseria gonorrhoeae infection, and previous studies have shown the method to be highly sensitive and specific for urogenital samples. We present the first confirmed clinical N. gonorrhoeae false-positive result using the cobas 4800 NG assay, obtained from testing a pharyngeal swab sample and caused by cross-reaction with a commensal Neisseria strain

    Modulation of the NF-κB Pathway by Bordetella pertussis Filamentous Hemagglutinin

    Get PDF
    Background Filamentous hemagglutinin (FHA) is a cell-associated and secreted adhesin produced by Bordetella pertussis with pro-apoptotic and pro-inflammatory activity in host cells. Given the importance of the NF-κB transcription factor family in these host cell responses, we examined the effect of FHA on NF-κB activation in macrophages and bronchial epithelial cells, both of which are relevant cell types during natural infection. Methodology/Principal Findings Exposure to FHA of primary human monocytes and transformed U-937 macrophages, but not BEAS-2B epithelial cells, resulted in early activation of the NF-κB pathway, as manifested by the degradation of cytosolic IκBα, by NF-κB DNA binding, and by the subsequent secretion of NF-κB-regulated inflammatory cytokines. However, exposure of macrophages and human monocytes to FHA for two hours or more resulted in the accumulation of cytosolic IκBα, and the failure of TNF-α to activate NF-κB. Proteasome activity was attenuated following exposure of cells to FHA for 2 hours, as was the nuclear translocation of RelA in BEAS-2B cells. Conclusions These results reveal a complex temporal dynamic, and suggest that despite short term effects to the contrary, longer exposures of host cells to this secreted adhesin may block NF-κB activation, and perhaps lead to a compromised immune response to this bacterial pathogen

    BMQ

    Full text link
    BMQ: Boston Medical Quarterly was published from 1950-1966 by the Boston University School of Medicine and the Massachusetts Memorial Hospitals. Pages 49-52, v17n2, provided courtesy of Howard Gotlieb Archival Research Center

    Cysteine dependence of Lactobacillus iners is a potential therapeutic target for vaginal microbiota modulation

    Get PDF
    Vaginal microbiota composition affects many facets of reproductive health. Lactobacillus iners-dominated microbial communities are associated with poorer outcomes, including higher risk of bacterial vaginosis (BV), compared with vaginal microbiota rich in L. crispatus. Unfortunately, standard-of-care metronidazole therapy for BV typically results in dominance of L. iners, probably contributing to post-treatment relapse. Here we generate an L. iners isolate collection comprising 34 previously unreported isolates from 14 South African women with and without BV and 4 previously unreported isolates from 3 US women. We also report an associated genome catalogue comprising 1,218 vaginal Lactobacillus isolate genomes and metagenome-assembled genomes from >300 women across 4 continents. We show that, unlike L. crispatus, L. iners growth is dependent on L-cysteine in vitro and we trace this phenotype to the absence of canonical cysteine biosynthesis pathways and a restricted repertoire of cysteine-related transport mechanisms. We further show that cysteine concentrations in cervicovaginal lavage samples correlate with Lactobacillus abundance in vivo and that cystine uptake inhibitors selectively inhibit L. iners growth in vitro. Combining an inhibitor with metronidazole promotes L. crispatus dominance of defined BV-like communities in vitro by suppressing L. iners growth. Our findings enable a better understanding of L. iners biology and suggest candidate treatments to modulate the vaginal microbiota to improve reproductive health for women globally

    Adhesion and host cell modulation: critical pathogenicity determinants of Bartonella henselae

    Get PDF
    Bartonella henselae, the agent of cat scratch disease and the vasculoproliferative disorders bacillary angiomatosis and peliosis hepatis, contains to date two groups of described pathogenicity factors: adhesins and type IV secretion systems. Bartonella adhesin A (BadA), the Trw system and possibly filamentous hemagglutinin act as promiscous or specific adhesins, whereas the virulence locus (Vir)B/VirD4 type IV secretion system modulates a variety of host cell functions. BadA mediates bacterial adherence to endothelial cells and extracellular matrix proteins and triggers the induction of angiogenic gene programming. The VirB/VirD4 type IV secretion system is responsible for, e.g., inhibition of host cell apoptosis, bacterial persistence in erythrocytes, and endothelial sprouting. The Trw-conjugation system of Bartonella spp. mediates host-specific adherence to erythrocytes. Filamentous hemagglutinins represent additional potential pathogenicity factors which are not yet characterized. The exact molecular functions of these pathogenicity factors and their contribution to an orchestral interplay need to be analyzed to understand B. henselae pathogenicity in detail
    • …
    corecore