49 research outputs found

    Oxidative Stress and Vascular Function: Implications for Pharmacologic Treatments

    Get PDF
    Production of considerable amounts of reactive oxygen species (ROS) eventually leads to oxidative stress. A key role of oxidative stress is evident in the pathologic mechanisms of endothelial dysfunction and associated cardiovascular diseases. Vascular enzymes such as NADPH oxidases, xanthine oxidase, and uncoupled endothelial nitric oxide synthase are involved in the production of ROS. The question remains whether pharmacologic approaches can effectively combat the excessive ROS production in the vasculature. Interestingly, existing registered cardiovascular drugs can directly or indirectly act as antioxidants, thereby preventing the damaging effects of ROS. Moreover, new compounds targeting NADPH oxidases have been developed. Finally, food-derived compounds appear to be effective inhibitors of oxidative stress and preserve vascular function

    Reoxygenation after cold hypoxic storage of cultured precision-cut rat liver slices: effects on cellular metabolism and drug biotransformation.

    No full text
    Cultured rat precision-cut liver slices (PCLS) were used to study the influence of hypothermic preservation and reoxygenation at 37 degrees C on cellular metabolism and drug biotransformation. Cold hypoxic storage caused a depressed metabolism in rat liver slices, but reoxygenation for 8 h at 37 degrees C partially restored the levels of both ATP and GSH and totally restored the capacity to synthesize proteins. Metabolism of midazolam (CYP3A-dependent oxidation) by cold preserved liver slices was decreased by 30% but no further affected by reoxygenation, showing the same profile as freshly cut slices. Such a reoxygenation at 37 degrees C is accompanied by a dramatic loss of CYP3A2 protein while CYP3A1 protein was unaffected. These results suggest that CYP3A2 did not play a major role in midazolam oxidation. Such results are not consistent with a putative reoxygenation injury but rather with cold hypoxic damage. Since cold preserved liver slices did not respond to bacterial endotoxin stimulation (lipopolysaccharides), a minor role of non-parenchymal cells is suggested as mediators for deleterious effects developed during the cold storage

    Novel piperidine erivatives: inhibitory properties towards cytochrome P450 isoforms, and cytoprotective and cytotoxic characteristics.

    No full text
    The ability of a series of eight piperidine derivatives, substituted at positions 1, 3 and 4, to inhibit P450-dependent metabolism of specific substrates, is reported. Five different P450 isoforms (1A1, 1A2, 2B1, 2E1 and 3A1) in differentially induced rat liver microsomes were used for this purpose. From the results it is concluded that compound 2 was the most potent and moreover, highly selective inhibitor for P4502B1 with an I
    corecore