7 research outputs found

    Scheme for generating entangled states of two field modes in a cavity

    Full text link
    This paper considers a two-level atom interacting with two cavity modes with equal frequencies. Applying a unitary transformation, the system reduces to the analytically solvable Jaynes-Cummings model. For some particular field states, coherent and squeezed states, the transformation between the two bare basis's, related by the unitary transformation, becomes particularly simple. It is shown how to generate, the highly non-classical, entangled coherent states of the two modes, both in the zero and large detuning cases. An advantage with the zero detuning case is that the preparation is deterministic and no atomic measurement is needed. For the large detuning situation a measurement is required, leaving the field in either of two orthogonal entangled coherent states.Comment: Accepted in J. Mod. Opt.; 12 pages; Replaced with revised version. Extended discussion of experimental realizations, earlier studies in the field and on the frequency dependence in the adiabatic eliminatio

    Towards quantum computing with single atoms and optical cavities on atom chips

    Full text link
    We report on recent developments in the integration of optical microresonators into atom chips and describe some fabrication and implementation challenges. We also review theoretical proposals for quantum computing with single atoms based on the observation of photons leaking through the cavity mirrors. The use of measurements to generate entanglement can result in simpler, more robust and scalable quantum computing architectures. Indeed, we show that quantum computing with atom-cavity systems is feasible even in the presence of relatively large spontaneous decay rates and finite photon detector efficiencies.Comment: 14 pages, 6 figure

    Quantum Information

    No full text
    corecore