2 research outputs found

    Analysis of pressure stabilizer elliptic chambers on the deformed state by numerical method

    No full text
    The question of pressure and flow rate stabilization is particularly relevant to short pipelines systems, which have high requirements for flow rate consistency of the working fluid. At medium and high pressures (up to 100 atmospheres and higher) the pressure stabilizer with elliptical elastic chambers provides conditions for normal operation of the corresponding equipment. For proper design of the stabilizer, especially deciding question of the liquid volume which the stabilizer can accommodate, it is necessary to carry out the calculation of the elliptical shell in the deformed state. The article provides the calculation of the elliptical shell in the deformed state by step by step loading method and checking the strength conditions at each step of loading. One of the main questions of the study is the question of what maximum load can withstand elliptical chambers. In this paper, we investigate the dependence of the maximum pressure at which the unit operates in the elastic area of deformation on the of the elliptical pipe wall thickness. If harmful oscillating discharge is known we should know the liquid volume which the camera can take. The dependence of the cross-sectional area increase coefficient on the thickness of the pipe wall is built. The article discusses some questions of pressure stabilizer designing

    ИсслСдованиС влияния стСпСни соприкосновСния повСрхностСй качСния Π½Π° ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹Π΅ напряТСния Π² ΡˆΠ°Ρ€ΠΈΠΊΠΎΠ²Ρ‹Ρ… Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠ΄ΡˆΠΈΠΏΠ½ΠΈΠΊΠ°Ρ…

    Get PDF
    The study is devoted to the determination of the coefficientsof the degree of contact of rolling surfaces, considering the tolerance field of rolling bodies, as well as the influence of the coefficients of the degreeof contact on the maximum contact stresses in ball radial bearings. A method has been developed for determining the maximum value of the coefficient of the degree of contact of rolling surfaces of ball radial bearings, taking into account the tolerance field of rolling bodies. It is established thatthe coefficient of the degree of contact of the rolling surfaces for each bearing size with a certain radius of the raceways is located in a range that depends on the limiting dimensions of the rolling elements. It is shown that the coef-ficient of the degree of contact of the rolling elements with the tracks ofthe outer ring, with the same auxiliary value, considering the sum and difference of the curvatures of the rolling surfaces, is greater than the inner one. Therefore, in order to reduce contact stresses on the outer ring ofthe bearing, the radius of its raceway can be made smaller than the inner one. A method has been developed for calculating the maximum contact stresses on the raceways of radial ball bearings, taking into accountthe coefficient of the degree of contact of rolling surfaces and the tolerance field of rolling bodies, which allows calculating contact stresses for radial ball bearings of any size at any coefficients of the degree of contact of rolling surfaces.ИсслСдованиС посвящСно ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ коэффициСнтов стСпСни соприкосновСния повСрхностСй качСния с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ поля допуска Ρ‚Π΅Π» качСния, Π° Ρ‚Π°ΠΊΠΆΠ΅ влияния коэффициСнтов стСпСни соприкосновСния Π½Π° ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹Π΅ напряТСния Π² ΡˆΠ°Ρ€ΠΈΠΊΠΎΠ²Ρ‹Ρ… Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠ΄ΡˆΠΈΠΏΠ½ΠΈΠΊΠ°Ρ…. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° опрСдСлСния максимальной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ коэффициСнта стСпСни соприкосновСния повСрхностСй качСния ΡˆΠ°Ρ€ΠΈΠΊΠΎΠ²Ρ‹Ρ… Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… подшипников с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ поля допуска Ρ‚Π΅Π» качСния. УстановлСно, Ρ‡Ρ‚ΠΎ коэффициСнт стСпСни соприкосновСния повСрхностСй качСния для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π° подшипника с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΌ радиусом Π΄ΠΎΡ€ΠΎΠΆΠ΅ΠΊ качСния располагаСтся Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ зависит ΠΎΡ‚ ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² Ρ‚Π΅Π» качСния. Показано, Ρ‡Ρ‚ΠΎ коэффициСнт стСпСни соприкосновСния Ρ‚Π΅Π» качСния с Π΄ΠΎΡ€ΠΎΠΆΠΊΠ°ΠΌΠΈ Π½Π°Ρ€ΡƒΠΆΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠ»ΡŒΡ†Π° ΠΏΡ€ΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅, ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‰Π΅ΠΉ сумму ΠΈ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½ повСрхностСй качСния, большС, Ρ‡Π΅ΠΌ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ для сниТСния ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹Ρ… напряТСний Π½Π° Π½Π°Ρ€ΡƒΠΆΠ½ΠΎΠΌ ΠΊΠΎΠ»ΡŒΡ†Π΅ подшипника радиус Π΅Π³ΠΎ Π΄ΠΎΡ€ΠΎΠΆΠΊΠΈ качСния ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ мСньшС, Ρ‡Π΅ΠΌ Π½Π° Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΌ. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° расчСта ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹Ρ… напряТСний Π½Π° Π΄ΠΎΡ€ΠΎΠΆΠΊΠ°Ρ… качСния ΡˆΠ°Ρ€ΠΈΠΊΠΎΠ²Ρ‹Ρ… Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… подшипников с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ коэффициСнта стСпСни соприкосновСния повСрхностСй качСния ΠΈ поля допуска Ρ‚Π΅Π» качСния, которая позволяСт Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡ‚ΡŒ расчСт ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹Ρ… напряТСний для Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡˆΠ°Ρ€ΠΈΠΊΠΎΠ²Ρ‹Ρ… подшипников любого Ρ‚ΠΈΠΏΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π° ΠΏΡ€ΠΈ Π»ΡŽΠ±Ρ‹Ρ… коэффициСнтах стСпСни соприкосновСния повСрхностСй качСния
    corecore