72 research outputs found

    Mean-field theory for scale-free random networks

    Full text link
    Random networks with complex topology are common in Nature, describing systems as diverse as the world wide web or social and business networks. Recently, it has been demonstrated that most large networks for which topological information is available display scale-free features. Here we study the scaling properties of the recently introduced scale-free model, that can account for the observed power-law distribution of the connectivities. We develop a mean-field method to predict the growth dynamics of the individual vertices, and use this to calculate analytically the connectivity distribution and the scaling exponents. The mean-field method can be used to address the properties of two variants of the scale-free model, that do not display power-law scaling.Comment: 19 pages, 6 figure

    Some Perspectives on Network Modeling in Therapeutic Target Prediction

    Full text link
    Drug target identification is of significant commercial interest to pharmaceutical companies, and there is a vast amount of research done related to the topic of therapeutic target identification. Interdisciplinary research in this area involves both the biological network community and the graph algorithms community. Key steps of a typical therapeutic target identification problem include synthesizing or inferring the complex network of interactions relevant to the disease, connecting this network to the disease-specific behavior, and predicting which components are key mediators of the behavior. All of these steps involve graph theoretical or graph algorithmic aspects. In this perspective, we provide modelling and algorithmic perspectives for therapeutic target identification and highlight a number of algorithmic advances, which have gotten relatively little attention so far, with the hope of strengthening the ties between these two research communities

    Bacteriophage-mediated competition in Bordetella bacteria

    Full text link
    Apparent competition between species is believed to be one of the principle driving forces that structure ecological communities, although the precise mecha nisms have yet to be characterized. Here we develop a model system that isolates phage-mediated interactions by neutralizing resource competition using two genetically identical Bordetella bronchiseptica strains that differ only in that one is the carrier of a phage and the other is susceptible to the phage. We observe and quantify the competitive advantage of the bacterial strain bearing the prophage in both invading and in resisting invasion by bacteria susceptible to the phage, and use our measurements to develop a mathematical model of phage-mediated competition. The model predicts, and experimental evidence confirms, that the competitive advantage conferred by the phage depends only on the relative phage pathology and is independent of other phage and host parameters. This work combines experimental and mathematical approaches to the study of phage-driven competition, and provides an experimentally tested framework for evaluation of the effects of pathogens/parasites on interspecific competition.Comment: 10pages, 8 figure

    Introduction to the Special Issue on Approaches to Control Biological and Biologically Inspired Networks

    Full text link
    The emerging field at the intersection of quantitative biology, network modeling, and control theory has enjoyed significant progress in recent years. This Special Issue brings together a selection of papers on complementary approaches to observe, identify, and control biological and biologically inspired networks. These approaches advance the state of the art in the field by addressing challenges common to many such networks, including high dimensionality, strong nonlinearity, uncertainty, and limited opportunities for observation and intervention. Because these challenges are not unique to biological systems, it is expected that many of the results presented in these contributions will also find applications in other domains, including physical, social, and technological networks
    • …
    corecore