192 research outputs found

    Quantum-optical influences in optoelectronics - an introduction

    Get PDF
    This focused review discusses the increasing importance of quantum optics in the physics and engineering of optoelectronic components. Two influences relating to cavity quantum electrodynamics are presented. One involves the development of low threshold lasers, when the channeling of spontaneous emission into the lasing mode becomes so efficient that the concept of lasing needs revisiting. The second involves the quieting of photon statistics to produce single-photon sources for applications such as quantum information processing. An experimental platform, consisting of quantum-dot gain media inside micro- and nanocavities, is used to illustrate these influences of the quantum mechanical aspect of radiation. An overview is also given on cavity quantum electrodynamics models that may be applied to analyze experiments or design devices.EC/FP7/615613/EU/External Quantum Control of Photonic Semiconductor Nanostructures/EXQUISIT

    Micropillars with a controlled number of site-controlled quantum dots

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 112, 071101 (2018) and may be found at https://doi.org/10.1063/1.5017692.We report on the realization of micropillars with site-controlled quantum dots (SCQDs) in the active layer. The SCQDs are grown via the buried stressor approach which allows for the positioned growth and device integration of a controllable number of QDs with high optical quality. This concept is very powerful as the number and the position of SCQDs in the cavity can be simultaneously controlled by the design of the buried-stressor. The fabricated micropillars exhibit a high degree of position control for the QDs above the buried stressor and Q-factors of up to 12 000 at an emission wavelength of around 930 nm. We experimentally analyze and numerically model the cavity Q-factor, the mode volume, the Purcell factor, and the photon-extraction efficiency as a function of the aperture diameter of the buried stressor. Exploiting these SCQD micropillars, we experimentally observe a Purcell enhancement in the single-QD regime with FP = 4.3 ± 0.3.EC/FP7/615613/EU/External Quantum Control of Photonic Semiconductor Nanostructures/EXQUISITEDFG, SFB 787, Halbleiter - Nanophotonik: Materialien, Modelle, Bauelement

    Cesium‐vapor‐based delay of single photons emitted by deterministically fabricated quantum dot microlenses

    Get PDF
    Quantum light sources are key building blocks of photonic quantum technologies. For many applications, it is of interest to control the arrival time of single photons emitted by such quantum devices, or even to store single photons in quantum memories. In situ electron beam lithography is applied to realize InGaAs quantum dot (QD)‐based single‐photon sources, which are interfaced with cesium (Cs) vapor to control the time delay of emitted photons. Via numerical simulations of the light–matter interaction in realistic QD‐Cs‐vapor configurations, the influence of the vapor temperature and spectral QD‐atom detuning is explored to maximize the achievable delay in experimental studies. As a result, this hybrid quantum system allows to trigger the emission of single photons with a linewidth as low as 1.54 GHz even under non‐resonant optical excitation and to delay the emission pulses by up to (15.71 ± 0.01) ns for an effective cell length of 150 mm. This work can pave the way for scalable quantum systems relying on a well‐controlled delay of single photons on a time scale of up to a few tens of nanoseconds.BMBF, 03V0630TIB, Entwicklung einer Halbleiterbasierten Einzelphotonenquelle fĂŒr die QuanteninformationstechnologieBMBF, 13N14876, Quantenkommunikations-Systeme auf Basis von Einzelphotonenquellen (QuSecure)DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, BauelementeTU Berlin, Open-Access-Mittel - 201
    • 

    corecore