890 research outputs found

    Indigenous demosponge spicules in a Late Devonian stromatoporoid basal skeleton from the Frasnian of Belgium

    Get PDF
    This paper records the first example of a demosponge spicule framework in a single specimen of a Devonian stromatoporoid from the Frasnian of southern Belgium. The small sample (2.5 × 2 cm) is a component in a brecciated carbonate from a carbonate mound in La Boverie Quarry 30 km east of Dinant. Because of the small size of the sample, generic identification is not confirmed, but the stromatoporoid basal skeleton is similar to the genus Stromatopora. The spicules are arranged in the calcified skeleton, but not in the gallery space, and are recrystallized as multi-crystalline calcite. The spicules fall into two size ranges: 10-20 μm diameter and 500-2000 μm long for the large ones and between 5-15 μm diameter and 50-100 μm length for the small ones. In tangential section, the spicules are circular, they have a simple structure, and no axial canal has been preserved. The large spicules are always monaxons, straight or slightly curved styles or strongyles. The spicules most closely resemble halichondrid/axinellid demosponge spicules and are important rare evidence of the existence of spicules in Palaeozoic stromatoporoids, reinforcing the interpretation that stromatoporoids were sponges. The basal skeleton may have had an aragonitic spherulitic mineralogy. Furthermore, the spicules indicate that this stromatoporoid sample is a demosponge. © 2014 Lethaia Foundation. Published by John Wiley & Sons Ltd

    origins of their palaeobiodiversity and highlights in history of preservation

    Get PDF
    researc

    An Outline of the Quaternary Stratigraphy of Austria

    Get PDF
    Es wird ein Überblick über die in Österreich verwendete Quartär-Stratigraphie gegeben. Die stratigraphische Gliederung der kartierbaren Sedimenteinheiten basiert teilweise auf Kriterien der Lithostratigraphie (lithologischer Eigenschaften) und jenen der Allostratigraphie (z.B. Diskonitinuitäten). Für das Altpleistozän (2.58–0.78 Ma) fehlen bis jetzt Spuren einer Vergletscherung. Die wenigen und isolierten Sedimentvorkommen belegen fluviatile Akkumulation und Lössablagerung in der Umgebung der Flüsse. Paläomagnetisch korrelierte Löss-Paläoboden – Sequenzen wie das Profil Stranzendorf mit der Gauss/Matuyama – Grenze bzw. Neogen/Quartär – Grenze dokumentieren in Übereinstimmung mit den globalen δ18O Werten etwas wärmere Bedingungen als im Mittelpleistozän (0.78–0.13 Ma). Vier Großvergletscherungen (Günz, Mindel, Riß und Würm) sind für Mittelpleistozän und Jungpleistozän belegt. Diese sind mit Sedimenten aus der Vorstoßphase überlagert von Grundmoräne, Endmoränen im Alpenvorland und damit verknüpfte Terrassenschüttungen sowie Lössakkumulation dokumentiert. Daraus ist die klimagesteuerte Sedimentation im Zusammenhang mit dem Vorstoß der Gletscher, der Ausbreitung des Permafrostes und der Frostschuttbildung bis ins Vorland erkennbar. Die jüngsten Großvergletscherungen Riß und Würm werden aufgrund geochronologischer Daten mit den Marinen Isotopenstufen (MIS) 6 und 2 korreliert. Für Günz und Mindel scheint eine Gleichzeitigkeit mit den Phasen massiver globaler Klimaverschlechterung während MIS 16 und MIS 12 plausibel. Dokumente für die schwächeren Glaziale wurden bisher nur in Lössprofilen (z.B. Krems Schießstätte) gefunden

    Distribution, geometry, age and origin of overdeepened valleys and basins in the Alps and their foreland

    Get PDF
    Overdeepened valleys and basins are commonly found below the present landscape surface in areas that were affected by Quaternary glaciations. Overdeepened troughs and their sedimentary fillings are important in applied geology, for example, for geotechnics of deep foundations and tunnelling, groundwater resource management, and radioactive waste disposal. This publication is an overview of the areal distribution and the geometry of overdeepened troughs in the Alps and their foreland, and summarises the present knowledge of the age and potential processes that may have caused deep erosion. It is shown that overdeepened features within the Alps concur mainly with tectonic structures and/or weak lithologies as well as with Pleistocene ice confluence and partly also diffluence situations. In the foreland, overdeepening is found as elongated buried valleys, mainly oriented in the direction of former ice flow, and glacially scoured basins in the ablation area of glaciers. Some buried deeply incised valleys were generated by fluvial down-cutting during the Messinian crisis but this mechanism of formation applies only for the southern side of the Alps. Lithostratigraphic records and dating evidence reveal that overdeepened valleys were repeatedly occupied and excavated by glaciers during past glaciations. However, the age of the original formation of (non-Messinian) overdeepened structures remains unknown. The mechanisms causing overdeepening also remain unidentified and it can only be speculated that pressurised meltwater played an important role in this contex

    Reply to “Reply to comments on defining biominerals and organominerals: Direct and indirect indicators of life [Perry et al., Sedimentary Geology, 201, 157–179]” by R.S. Perry and M.A. Sephton: [Sedimentary Geology 213 (2009) 156]

    Get PDF
    International audienceThis is a reply to R.S. Perry and M.A. Sephton's “Reply to comments on defining biominerals and organominerals: direct and indirect indicators of life [Perry et al., Sedimentary Geology, 201, 157–179]” [Sedimentary Geology 213 (2009) 156]

    Defining organominerals: Comment on ‘Defining biominerals and organominerals: Direct and indirect indicators of life' by Perry et al.

    Get PDF
    International audienceThe paper by Perry et al. (2007, Defining biominerals and organominerals: Direct and indirect indicators of life, Sedimentary Geology, 201, 157-179) proposes to introduce “the new term ‘organomineral'” to describe mineral products whose formation is induced by by-products of biological activity, dead and decaying organisms, or nonbiological organic compounds, to be distinguished from the biomineral components of living organisms. The substantive ‘organomineral', however, is not new: it was first introduced in 1993, with basically the same definition and distinction from biominerals, at the 7th International Symposium on Biomineralization (Défarge and Trichet, 1995, From biominerals to ‘organominerals': The example of the modern lacustrine calcareous stromatolites from Polynesian atolls, Bulletin de l'Institut Océanographique de Monaco, n° spéc. 14, vol. 2, pp. 265-271). Thereafter, more than twenty-five papers by various authors have been devoted to organominerals and organomineral formation (‘organomineralization') processes. Only two of these papers are cited by Perry et al., and without any reference to the definitions, or even the terms ‘organomineral' or ‘organomineralization', which they included. Moreover, Perry et al. tend to enlarge the original concept of organomineral to encompass all minerals containing organic matter, whether these organic compounds are active or passive in the mineralization, which introduces ambiguities detrimental to a fine understanding of present and past geobiological processes. Finally, Perry et al. propose to consider organominerals as indirect biosignatures that could be used in the search for evidence of life in the geological record and extraterrestrial bodies. This latter proposition also is problematical, in that organominerals may be formed in association with prebiotic or abiotic organic matter
    corecore