855 research outputs found

    Analysing Magnetism Using Scanning SQUID Microscopy

    Get PDF
    Scanning superconducting quantum interference device microscopy (SSM) is a scanning probe technique that images local magnetic flux, which allows for mapping of magnetic fields with high field and spatial accuracy. Many studies involving SSM have been published in the last decades, using SSM to make qualitative statements about magnetism. However, quantitative analysis using SSM has received less attention. In this work, we discuss several aspects of interpreting SSM images and methods to improve quantitative analysis. First, we analyse the spatial resolution and how it depends on several factors. Second, we discuss the analysis of SSM scans and the information obtained from the SSM data. Using simulations, we show how signals evolve as a function of changing scan height, SQUID loop size, magnetization strength and orientation. We also investigated 2-dimensional autocorrelation analysis to extract information about the size, shape and symmetry of magnetic features. Finally, we provide an outlook on possible future applications and improvements.Comment: 16 pages, 10 figure

    The filmic fugue of Ken Russell’s Pop Goes the Easel

    Get PDF
    First broadcast as an episode of BBC Television’s Monitor in 1962, Ken Russell’s documentary film Pop Goes the Easel profiles four young artists: Pauline Boty, Peter Phillips, Derek Boshier and Peter Blake. With an exuberant and richly varied approach to filming, Pop Goes the Easel is a rich and revealing document of early Pop Art in London. This article situates the film within the context of television’s engagement with the visual arts in the medium’s first 25 years. It is argued that part of its significance within the tradition of the visual arts on television is its resistance to the determinations of an explanatory voice. Also, that its achievement combines and develops approaches of photojournalism, documentary and art cinema from the mid- and late 1950s. It is further proposed that Pop Goes the Easel is especially note-worthy for its finely-balanced tensions between discourses traditionally understood as oppositional: the stasis of artworks versus the linear narrative of film; the indexical qualities of documentary versus the inventions of fiction; the mass-produced elements and images of popular culture versus the individual authorship and authority of high art; the abstracted rationality of critical discourse versus explosions of embodied sensuality; and the determinations and closure of a singular meaning versus polysemous openness

    Functional and Biogenetical Heterogeneity of the Inner Membrane of Rat-Liver Mitochondria

    Get PDF
    Rat liver mitochondria were fragmented by a combined technique of swelling, shrinking, and sonication. Fragments of inner membrane were separated by density gradient centrifugation. They differed in several respects: electronmicroscopic appearance, phospholipid and cytochrome contents, electrophoretic behaviour of proteins and enzymatic activities. Three types of inner membrane fractions were isolated. The first type is characterized by a high activity of metal chelatase, low activities of succinate-cytochrome c reductase and of glycerolphosphate dehydrogenase, as well as by a high phospholipid content and low contents of cytochromes aa3 and b. The second type displays maximal activities of glycerolphosphate dehydrogenase and metal chelatase, but contains relatively little cytochromes and has low succinate-cytochrome c reductase activity. The third type exhibits highest succinate-cytochrome c reductase activity, a high metal chelatase activity and highest cytochrome contents. However, this fraction was low in both glycerolphosphate dehydrogenase activity and phospholipid content. This fraction was also richest in the following enzyme activities: cytochrome oxidase, oligomycin-sensitive ATPase, proline oxidase, 3-hydroxybutyrate dehydrogenase and rotenone-sensitive NADH-cytochrome c reductase. Amino acid incorporation in vitro and in vivo in the presence of cycloheximide occurs predominantly into inner membrane fractions from the second type. These data suggest that the inner membrane is composed of differently organized parts, and that polypeptides synthesized by mitochondrial ribosomes are integrated into specific parts of the inner membrane

    European Multicenter Study for the Evaluation of a Dual-Layer Flow-Diverting Stent for Treatment of Wide-Neck Intracranial Aneurysms: The European Flow-Redirection Intraluminal Device Study

    Get PDF
    BACKGROUND AND PURPOSE: Endoluminal reconstruction with flow-diverting stents represents a widely accepted technique for the treatment of complex intracranial aneurysms. This European registry study analyzed the initial experience of 15 neurovascular centers with the Flow-Redirection Intraluminal Device (FRED) system. MATERIALS AND METHODS: Consecutive patients with intracranial aneurysms treated with the FRED between February 2012 and March 2015 were retrospectively reviewed. Complications and adverse events, transient and permanent morbidity, mortality, and occlusion rates were evaluated. RESULTS: During the defined study period, 579 aneurysms in 531 patients (median age, 54 years;range, 13-86 years) were treated with the FRED. Seven percent of patients were treated in the acute phase (3 days) of aneurysm rupture. The median aneurysm size was 7.6 mm (range, 1-36.6 mm), and the median neck size 4.5 mm (range, 1-30 mm). Angiographic follow-up of >3 months was available for 516 (89.1%) aneurysms. There was progressive occlusion witnessed with time, with complete occlusion in 18 (20%) aneurysms followed for up to 90 14 days, 141 (82.5%) for 180 +/- 20 days, 116 (91.3%) for 1 year +/- 24 days, and 122 (95.3%) aneurysms followed for >1 year. Transient and permanent morbidity occurred in 3.2% and 0.8% of procedures, respectively. The overall mortality rate was 1.5%. CONCLUSIONS: This retrospective study in real-world patients demonstrated the safety and efficacy of the FRED for the treatment of intracranial aneurysms. In most cases, treatment with a single FRED resulted in complete angiographic occlusion at 1 year

    Oral HPV infection and MHC class II deficiency (A study of two cases with atypical outcome)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Major histocompatibility complex class II deficiency, also referred to as bare lymphocyte syndrome is a rare primary Immunodeficiency disorder characterized by a profondly deficient human leukocyte antigen class II expression and a lack of cellular and humoral immune responses to foreign antigens. Clinical manifestations include extreme susceptibility to viral, bacterial, and fungal infections. The infections begin in the first year of life and involve usually the respiratory system and the gastrointestinal tract. Severe malabsorption with failure to thrive ensues, often leading to death in early childhood. Bone marrow transplantation is the curative treatment.</p> <p>Case reports</p> <p>Here we report two cases with a late outcome MHC class II deficiency. They had a long term history of recurrent bronchopulmonary and gastrointestinal infections. Bone marrow transplantation could not be performed because no compatible donor had been identified. At the age of 12 years, they developed oral papillomatous lesions related to HPV (human papillomavirus). The diagnosis of HPV infection was done by histological examination. HPV typing performed on the tissue obtained at biopsy showed HPV type 6. The lesions were partially removed after two months of laser treatment.</p> <p>Conclusions</p> <p>Viral infections are common in patients with MHC class II and remain the main cause of death. Besides warts caused by HPV infection do not exhibit a propensity for malignant transformation; they can cause great psychosocial morbidity.</p

    Release of a New Forage Bermudagrass Cultivar from the USDA-NPGS Cynodon Collection

    Get PDF
    Warm-season perennial grasses are the backbone of the pasture-based livestock industry in the southeastern USA. In Florida specifically, bahiagrass (Paspalum notatum Flugge) and bermudagrass (Cynodon spp.) support 1 million head of cattle and 15,000 beef cattle operations. Bermudagrass is the most widely planted forage species in the southeastern USA, planted in approximately 15 million ha and used for grazing, hay and silage. The genus Cynodon is native to southern Africa and germplasm collections have revealed a high degree of genetic variability within the genus. The United States Department of Agriculture National Plant Germplasm System (USDA-NPGS) maintains a collection of bermudagrass plant introduction (PIs) in Griffin, GA, USA and the USDA Georgia Coastal Plains Experiment Station, Tifton, GA, maintains additional forage germplasm. Multi-location trials were established in 2014 in four states (FL, GA, NC and OK) to screen the collection for herbage accumulation (HA) and nutritive value (NV). Due to the large genotype by environment interaction for HA across states, we focused on selecting accessions adapted to South Georgia and Florida. Several PIs showed improved HA and NV compared to ‘Tifton 85’ across several trials and years. Particularly, PI 316510 produced high HA in Citra, FL and Tifton, GA, had improved NV traits, and faster establishment compared to Tifton 85. We confirmed that PI 316510 is tetraploid by chromosome counts and flow cytometry. The PI 316510 has been released by the University of Florida under the name “Newell”

    Forward to the past: reinventing intelligence-led policing in Britain

    Get PDF
    Drawing on archival, secondary material and primary research, this paper examines 'Total Policing', the strategy recently adopted by London's Metropolitan Police. It situates that analysis within a critical examination of other innovative policing strategies previously employed in Britain. It argues that the prospects for Total Policing depend upon the resolution of long-standing problems such as: the inadequacy and inefficiency of local intelligence work; the paucity of evidence for the success of commanders' previous efforts to harness together the component parts of their forces in pursuit of a single mission; and, above all, a seeming inability to learn the lessons of the past. © 2013 © 2013 Taylor & Francis

    Potentials of Mean Force for Protein Structure Prediction Vindicated, Formalized and Generalized

    Get PDF
    Understanding protein structure is of crucial importance in science, medicine and biotechnology. For about two decades, knowledge based potentials based on pairwise distances -- so-called "potentials of mean force" (PMFs) -- have been center stage in the prediction and design of protein structure and the simulation of protein folding. However, the validity, scope and limitations of these potentials are still vigorously debated and disputed, and the optimal choice of the reference state -- a necessary component of these potentials -- is an unsolved problem. PMFs are loosely justified by analogy to the reversible work theorem in statistical physics, or by a statistical argument based on a likelihood function. Both justifications are insightful but leave many questions unanswered. Here, we show for the first time that PMFs can be seen as approximations to quantities that do have a rigorous probabilistic justification: they naturally arise when probability distributions over different features of proteins need to be combined. We call these quantities reference ratio distributions deriving from the application of the reference ratio method. This new view is not only of theoretical relevance, but leads to many insights that are of direct practical use: the reference state is uniquely defined and does not require external physical insights; the approach can be generalized beyond pairwise distances to arbitrary features of protein structure; and it becomes clear for which purposes the use of these quantities is justified. We illustrate these insights with two applications, involving the radius of gyration and hydrogen bonding. In the latter case, we also show how the reference ratio method can be iteratively applied to sculpt an energy funnel. Our results considerably increase the understanding and scope of energy functions derived from known biomolecular structures
    corecore