174 research outputs found

    Systematic study of the influence of coherent phonon wave packets on the lasing properties of a quantum dot ensemble

    Full text link
    Kohärente Phononen können die Licht-Materie-Wechselwirkung in Halbleiter Nanostrukturen stark ändern. Bei einem Ensemble von Quantenpunkten (QP) als aktivem Lasermedium sind Phononen im Stande, die Laserintensität deutlich zu verstärken oder abzuschwächen. Die Physik des gekoppelten Phonon-Exziton-Licht-Systems wird von verschiedenen Mechanismen dominiert, die im Experiment nicht eindeutig unterschieden werden können, da die komplizierte Probenstruktur zu einem komplexen Verspannungspuls führt, der auf das QP-Ensemble trifft. Hier zeigen wir durch eine umfassende theoretische Studie, wie die Laseremission durch Phononpulse verschiedener Form und QP-Ensembles verschiedener spektraler Verteilung beeinflusst wird. Dies erlaubt einen Einblick in die grundlegenden Wechselspiele des gekoppelten Gesamtsystems. Dadurch können wir zwischen zwei Mechanismen unterschieden: der adiabatischen Verschiebung des Ensembles und dem Schüttel-Effekt. Dies ebnet den Weg zu einer gezielten Kontrolle der Laser Emission durch kohärente Phononen.Coherent phonons can greatly vary light–matter interaction in semiconductor nanostructures placed inside an optical resonator on a picosecond time scale. For an ensemble of quantum dots (QDs) as active laser medium, phonons are able to induce a large enhancement or attenuation of the emission intensity, as has been recently demonstrated. The physics of this coupled phonon–exciton–light system consists of various effects, which in the experiment typically cannot be clearly separated, in particular, due to the complicated sample structure a rather complex strain pulse impinges on the QD ensemble. Here we present a comprehensive theoretical study how the laser emission is affected by phonon pulses of various shapes as well as by ensembles with different spectral distributions of the QDs. This gives insight into the fundamental interaction dynamics of the coupled phonon–exciton–light system, while it allows us to clearly discriminate between two prominent effects: the adiabatic shifting of the ensemble and the shaking effect. This paves the way to a tailored laser emission controlled by phonons.</p

    Dewetting of thin films on heterogeneous substrates: Pinning vs. coarsening

    Full text link
    We study a model for a thin liquid film dewetting from a periodic heterogeneous substrate (template). The amplitude and periodicity of a striped template heterogeneity necessary to obtain a stable periodic stripe pattern, i.e. pinning, are computed. This requires a stabilization of the longitudinal and transversal modes driving the typical coarsening dynamics during dewetting of a thin film on a homogeneous substrate. If the heterogeneity has a larger spatial period than the critical dewetting mode, weak heterogeneities are sufficient for pinning. A large region of coexistence between coarsening dynamics and pinning is found.Comment: 4 pages, 4 figure

    A Review of Recent Developments in Atomic Processes for Divertors and Edge Plasmas

    Full text link
    The most promising concepts for power and particle control in tokamaks and other fusion experiments rely upon atomic processes to transfer the power and momentum from the edge plasma to the plasma chamber walls. This places a new emphasis on processes at low temperatures (1-200 eV) and high densities (10^20-10^22 m^-3). The most important atomic processes are impurity and hydrogen radiation, ionization, excitation, recombination, charge exchange, radiation transport, molecular collisions, and elastic scattering of atoms, molecules and ions. Important new developments have occurred in each of these areas. The best available data for these processes and an assessment of their role in plasma wall interactions are summarized, and the major areas where improved data are needed are reviewed.Comment: Preprint for the 11th PSI meeting, postscript with 22 figures, 40 page

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Formulation of the twisted-light-matter interaction at the phase singularity: Beams with strong magnetic fields

    No full text
    The formulation of the interaction of matter with singular light fields needs special care. In a recent article [G. F. Quinteiro, Phys. Rev. A 91, 033808 (2015)PLRAAN1050-294710.1103/PhysRevA.91.033808] we have shown that the Hamiltonian describing the interaction of a twisted-light beam having parallel orbital and spin angular momenta with a small object located close to the phase singularity can be expressed only in terms of the electric field of the beam. Here we complement our study by providing an interaction Hamiltonian for beams having antiparallel orbital and spin angular momenta. Such beams may exhibit unusually strong magnetic effects. We further extend our formulation to radially and azimuthally polarized beams. The advantages of our formulation are that for all beams the Hamiltonian is written solely in terms of the electric and magnetic fields of the beam and as such it is manifestly gauge invariant. Furthermore, it is intuitive by resembling the well-known expressions in the dipole-electric and dipole-magnetic moment approximations.Fil: Quinteiro, Guillermo Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Ecología, Genética y Evolución. Buenos Aires; Argentina. Westfalische Wilhelms Universitat; AlemaniaFil: Reiter, D.E.. Westfalische Wilhelms Universitat; AlemaniaFil: Kuhn, T.. Westfalische Wilhelms Universitat; Alemani

    Distinctive characteristics of carrier-phonon interactions in optically driven semiconductor quantum dots

    Full text link
    We review distinct features arising from the unique nature of the carrier-phonon coupling in self-assembled semiconductor quantum dots. Because of the discrete electronic energy structure, the pure dephasing coupling usually dominates the phonon effects, of which two properties are of key importance: The resonant nature of the dot-phonon coupling, i.e. its non-monotonic behavior as a function of energy, and the fact that it is of super-Ohmic type. Phonons do not only act destructively in quantum dots by introducing dephasing, they also offer new opportunities, e.g. in state preparation protocols. Apart from being an interesting model systems for studying fundamental physical aspects, quantum dot and quantum dot-microcavity systems are a hotspot for many innovative applications. We discuss recent developments related to the decisive impact of phonons on key figures of merit of photonic devices like single or entangled photon sources under aspects like indistinguishability, purity and brightness. All in all it follows that understanding and controlling the carrier-phonon interaction in semiconductor quantum dots is vital for their usage in quantum information technology
    • …
    corecore