7,082 research outputs found

    A Survey of Irradiated Pillars, Globules, and Jets in the Carina Nebul

    Get PDF
    We present wide-field, deep narrowband H2_2, Brγ\gamma, Hα\alpha, [S II], [O III], and broadband I and K-band images of the Carina star formation region. The new images provide a large-scale overview of all the H2_2 and Brγ\gamma emission present in over a square degree centered on this signature star forming complex. By comparing these images with archival HST and Spitzer images we observe how intense UV radiation from O and B stars affects star formation in molecular clouds. We use the images to locate new candidate outflows and identify the principal shock waves and irradiated interfaces within dozens of distinct areas of star-forming activity. Shocked molecular gas in jets traces the parts of the flow that are most shielded from the intense UV radiation. Combining the H2_2 and optical images gives a more complete view of the jets, which are sometimes only visible in H2_2. The Carina region hosts several compact young clusters, and the gas within these clusters is affected by radiation from both the cluster stars and the massive stars nearby. The Carina Nebula is ideal for studying the physics of young H II regions and PDR's, as it contains multiple examples of walls and irradiated pillars at various stages of development. Some of the pillars have detached from their host molecular clouds to form proplyds. Fluorescent H2_2 outlines the interfaces between the ionized and molecular gas, and after removing continuum, we detect spatial offsets between the Brγ\gamma and H2_2 emission along the irradiated interfaces. These spatial offsets can be used to test current models of PDRs once synthetic maps of these lines become available.Comment: Accepted in the Astronomical Journa

    Deuteron Momentum Distribution in KD2HPO4

    Full text link
    The momentum distribution in KD2PO4(DKDP) has been measured using neutron Compton scattering above and below the weakly first order paraelectric-ferroelectric phase transition(T=229K). There is very litte difference between the two distributions, and no sign of the coherence over two locations for the proton observed in the paraelectric phase, as in KH2PO4(KDP). We conclude that the tunnel splitting must be much less than 20mev. The width of the distribution indicates that the effective potential for DKDP is significantly softer than that for KDP. As electronic structure calculations indicate that the stiffness of the potential increases with the size of the coherent region locally undergoing soft mode fluctuations, we conclude that there is a mass dependent quantum coherence length in both systems.Comment: 6 pages 5 figure

    Comment on ``Structure of exotic nuclei and superheavy elements in a relativistic shell model''

    Get PDF
    A recent paper [M. Rashdan, Phys. Rev. C 63, 044303 (2001)] introduces the new parameterization NL-RA1 of the relativistic mean-field model which is claimed to give a better description of nuclear properties than earlier ones. Using this model ^{298}114 is predicted to be a doubly-magic nucleus. As will be shown in this comment these findings are to be doubted as they are obtained with an unrealistic parameterization of the pairing interaction and neglecting ground-state deformation.Comment: 2 pages REVTEX, 3 figures, submitted to comment section of Phys. Rev. C. shortened and revised versio

    Dewetting of thin polymer films near the glass transition

    Full text link
    Dewetting of ultra-thin polymer films near the glass transition exhibits unexpected front morphologies [G. Reiter, Phys. Rev. Lett., 87, 186101 (2001)]. We present here the first theoretical attempt to understand these features, focusing on the shear-thinning behaviour of these films. We analyse the profile of the dewetting film, and characterize the time evolution of the dry region radius, Rd(t)R_{d}(t), and of the rim height, hm(t)h_{m}(t). After a transient time depending on the initial thickness, hm(t)h_{m}(t) grows like t\sqrt{t} while Rd(t)R_{d}(t) increases like exp(t)\exp{(\sqrt{t})}. Different regimes of growth are expected, depending on the initial film thickness and experimental time range.Comment: 4 pages, 5 figures Revised version, published in Physical Review Letters: F. Saulnier, E. Raphael and P.-G. de Gennes, Phys. Rev. Lett. 88, 196101 (2002
    corecore