10,357 research outputs found
Osmotic force resisting chain insertion in a colloidal suspension
We consider the problem of inserting a stiff chain into a colloidal
suspension of particles that interact with it through excluded volume forces.
The free energy of insertion is associated with the work of creating a cavity
devoid of colloid and sufficiently large to accomodate the chain. The
corresponding work per unit length is the force that resists the entry of the
chain into the colloidal suspension. In the case of a hard sphere fluid, this
work can be calculated straightforwardly within the scaled particle theory; for
solutions of flexible polymers, on the other hand, we employ simple scaling
arguments. The forces computed in these ways are shown, for nanometer chain and
colloid diameters, to be of the order of tens of pN for solution volume
fraction for biophysical processes such as the ejection of DNA from viral
capsids into the cell cytoplasm.Comment: 16 pages,3 figures. Accepted for publication in European Physical
Journal
Morphological Thermodynamics of Fluids: Shape Dependence of Free Energies
We examine the dependence of a thermodynamic potential of a fluid on the
geometry of its container. If motion invariance, continuity, and additivity of
the potential are fulfilled, only four morphometric measures are needed to
describe fully the influence of an arbitrarily shaped container on the fluid.
These three constraints can be understood as a more precise definition for the
conventional term "extensive" and have as a consequence that the surface
tension and other thermodynamic quantities contain, beside a constant term,
only contributions linear in the mean and Gaussian curvature of the container
and not an infinite number of curvatures as generally assumed before. We verify
this numerically in the entropic system of hard spheres bounded by a curved
wall.Comment: 4 pages, 3 figures, accepted for publication in PR
- …