5 research outputs found

    The irradiation facility at the AGOR cyclotron

    No full text
    The KVI is conducting radiobiology research using protons up to 190 MeV from the superconducting AGOR cyclotron in collaboration with the University Medical Center Groningen (UMCG) since 1998. Using the same set-up, we have started irradiations for radiation hardness studies of detectors and components for the European Space Agency (ESA) and industrial parties. For these irradiations, we use either mono-energetic protons or a simulated solar flare energy spectrum with fluxes up to 5 x 108 protons cm(-2) s(-1). Furthermore, tests of radiation effects such as single event upsets, are being performed with intensities down to a few particles/s. Different energies are achieved by degrading the primary beam energy. We are currently developing the capability for heavy ion irradiations in air with beams up to Xe at beam energies between 15 and 45 MeV per nucleon. Performing the irradiations in air simplifies handling and monitoring of the device under test. The high energy allows penetration to the active layer of electronic devices, without modifications to the chip housing. The different ions provide a wide range in LET. (c) 2007 Elsevier B.V. All rights reserved

    Development of a multifunctional particle spectrometer for space radiation imaging

    No full text
    For future exploration of the solar system, the European Space Agency (ESA) is planning missions to Mercury (BepiColombo), the Sun (SolarOrbiter) and to the moons of Jupiter and Saturn. The expected intensity of radiation during such missions is hazardous for the scientific instruments and the satellite. To extend the lifetime of the satellite and its payload a multifunctional particle spectrometer (MPS) is being developed. The basic function of the MPS is to send an alarm signal to the satellite control system during periods of high radiation. In addition the MPS is a scientific instrument that will unfold the composition of the different contributing particles on-line by the dE/dx versus E method. The energy spectrum and angular distribution of the particles will be recorded as well. This article describes the main requirements and the base line design for the MPS. A readout scheme consisting of a 32 channel ASIC from IDEAS is proposed and the signal filtering algorithm will run on a digital signal processor based on FPGA technology. Results are shown from prototype calibration studies with a proton beam. (c) 2008 Elsevier B.V. All rights reserved

    New scintillators for focal plane detectors in gamma-ray missions

    No full text
    Recent developments of cerium-doped lanthanum-halide scintillators like LaBr3:Ce show a remarkable performance in gamma-ray spectroscopy. When high energy resolution in combination with stopping power is required they provide excellent gamma-ray detector candidates for the use in space missions. Moreover, irradiation tests have shown that such detectors are radiation tolerant. In this paper we discuss a possible application of LaBr in nuclear astrophysics missions. We show results on recent proton irradiation tests at KVI in Groningen (NL) and discuss the damage and activation effects after irradiation. A possible implementation for a focal plane detector in a gamma-ray telescope and the expected performance is presented
    corecore