12 research outputs found

    Human cochlear nucleus on 7 tesla diffusion tensor imaging: insights into micro-anatomy and function for auditory brainstem implant surgery

    Full text link
    OBJECTIVE: The cochlear nucleus (CN) is the target of the auditory brainstem implant (ABI). Most ABI candidates have Neurofibromatosis Type 2 (NF2) and distorted brainstem anatomy from bilateral vestibular schwannomas. The CN is difficult to characterize as routine structural MRI does not resolve detailed anatomy. We hypothesize that diffusion tensor imaging (DTI) enables both in vivo localization and quantitative measurements of CN morphology. STUDY DESIGN: We analyzed 7 Tesla (T) DTI images of 100 subjects (200 CN) and relevant anatomic structures using an MRI brainstem atlas with submillimetric (50 μm) resolution. SETTING: Tertiary referral center. PATIENTS: Young healthy normal hearing adults. INTERVENTION: Diagnostic. MAIN OUTCOME MEASURES: Diffusion scalar measures such as fractional anisotropy (FA), mean diffusivity (MD), mode of anisotropy (Mode), principal eigenvectors of the CN, and the adjacent inferior cerebellar peduncle (ICP). RESULTS: The CN had a lamellar structure and ventral-dorsal fiber orientation and could be localized lateral to the inferior cerebellar peduncle (ICP). This fiber orientation was orthogonal to tracts of the adjacent ICP where the fibers run mainly caudal-rostrally. The CN had lower FA compared to the medial aspect of the ICP (0.44 ± 0.09 vs. 0.64 ± 0.08, p < 0.001). CONCLUSIONS: 7T DTI enables characterization of human CN morphology and neuronal substructure. An ABI array insertion vector directed more caudally would better correspond to the main fiber axis of CN. State-of-the-art DTI has implications for ABI preoperative planning and future image guidance-assisted placement of the electrode array

    An Atypical Case of Lyme Neuroborelliosis

    No full text
    Lyme neuroborreliosis in adults most commonly affects the facial cranial nerve but oculomotor or trigeminal nerve palsies have been reported in the medical literature. Interestingly, there is one case of an adult patient who was diagnosed with Lyme disease, and presented with isolated trochlear nerve palsy and normal MRI of the brain

    Transcanal endoscopic infracochlear vestibular neurectomy: A pilot cadaveric study

    No full text
    PURPOSE: Effective operative approaches for the treatment of refractory vertigo in Meniere\u27s disease are invasive. Vestibular neurectomy can preserve hearing and has been shown to be effective; however, current approaches require an extensive craniotomy. Transcanal endoscopic approaches to the internal auditory canal (IAC) with cochlear preservation have been recently described and may offer a minimally invasive approach to selectively sectioning the distal vestibular nerves while preserving residual hearing. MATERIALS AND METHODS: Three cadaveric human heads were imaged using high resolution computed tomography (CT). Anatomic analysis of preoperative CT scans showed adequate diameters ( \u3e 3mm) of the infracochlear surgical corridor for access to the IAC. A transcanal endoscopic approach was attempted to section the vestibular nerve. Post-operative CT scans were assessed to define the operative tract, determine cochlear preservation and assess cochlear and facial nerve preservation. RESULTS: Transcanal endoscopic approach was successfully performed (n=3) using 3mm-diameter, 14cm-length 0 degrees , 30 degrees , and 45 degrees endoscopes and microsurgical drills. In all cases the tympanomeatal flap and ossicular chain remained intact. Internal auditory canalotomy was performed using angled instruments and confirmed in real time via lateral skull base navigation. The vestibular nerves were readily identified and sectioned with preservation of the facial and cochlear nerves. Post-procedure CT showed no violation of the cochlea. CONCLUSION: A transcanal, infracochlear approach to the IAC may permit a minimally invasive approach to distal vestibular neurectomy in cadavers with appropriate anatomy

    Utility of Postoperative Magnetic Resonance Imaging in Patients Who Fail Superior Canal Dehiscence Surgery

    No full text
    OBJECTIVE: The etiology of symptoms following primary repair of superior canal dehiscence (SCD) may be due to a persistent third window. However, the extent of surgery cannot be seen on postoperative computed tomography (CT) since most repair materials are not radiopaque. We hypothesize that the extent of superior semicircular canal (SSC) occlusion following primary repair can be quantified based on postoperative magnetic resonance imaging (MRI) data. STUDY DESIGN: Retrospective series. SETTING: Tertiary care center. PATIENTS: Adult patients with a history of SCD syndrome who 1) report persistent symptoms following primary SCD repair and 2) underwent heavily T2-weighted MRI postoperatively. INTERVENTIONS: Analysis of SSC using 3D-reconstruction of CT co-registered with MRI data. MAIN OUTCOME MEASURES: Arc length of fluid void on MRI and quantification of persistent SCD based on CT/MRI co-registration. RESULTS: We identified 9 revision cases from a cohort of 145 SCD repairs at our institution (2002-2017) with CT/MRI data. A fluid void on postoperative MRI (indicating occlusion of the SSC) was observed in all cases (anterior limb: 50.1 degrees [±21.8 SD] and posterior limb 48.1 degrees [±28.5 SD]). Co-registration of CT/MRI revealed a residual defect that was most commonly found along the posterior limb in most patients with persistent symptoms. CONCLUSIONS: The extent of SCD repair can be determined using reformatted or direct T2-weighted MRI sequences in the plane of Pöschl. Co-registration of CT/MRI may be useful to determine the location of a residual superior canal defect and when present was found most commonly along the posterior limb

    Clinical Validation of Automatable Gaussian Normalized CBV in Brain Tumor Analysis: Superior Reproducibility and Slightly Better Association with Survival than Current Standard Manual Normal Appearing White Matter Normalization.

    Get PDF
    PURPOSE: To validate Gaussian normalized cerebral blood volume (GN-nCBV) by association with overall survival (OS) in newly diagnosed glioblastoma patients and compare this association with current standard white matter normalized cerebral blood volume (WN-nCBV). METHODS: We retrieved spin-echo echo-planar dynamic susceptibility contrast MRI acquired after maximal resection and prior to radiation therapy between 2006 and 2011 in 51 adult patients (28 male, 23 female; age 23-87 years) with newly diagnosed glioblastoma. Software code was developed in house to perform Gaussian normalization of CBV to the standard deviation of the whole brain CBV. Three expert readers manually selected regions of interest in tumor and normal-appearing white matter on CBV maps. Receiver operating characteristics (ROC) curves associating nCBV with 15-month OS were calculated for both GN-nCBV and WN-nCBV. Reproducibility and interoperator variability were compared using within-subject coefficient of variation (wCV) and intraclass correlation coefficients (ICCs). RESULTS: GN-nCBV ICC (≥0.82) and wCV (≤21%) were superior to WN-nCBV ICC (0.54-0.55) and wCV (≥46%). The area under the ROC curve analysis demonstrated both GN-nCBV and WN-nCBV to be good predictors of OS, but GN-nCBV was consistently superior, although the difference was not statistically significant. CONCLUSION: GN-nCBV has a slightly better association with clinical gold standard OS than conventional WM-nCBV in our glioblastoma patient cohort. This equivalent or superior validity, combined with the advantages of higher reproducibility, lower interoperator variability, and easier automation, makes GN-nCBV superior to WM-nCBV for clinical and research use in glioma patients. We recommend widespread adoption and incorporation of GN-nCBV into commercial dynamic susceptibility contrast processing software

    Three-Dimensional (3D) Printed Vestibular Schwannoma for Facial Nerve Tractography Validation

    Full text link
    Objectives: Predicting the course of cranial nerve (CN) VII in the cerebellopontine angle (CPA) on preoperative imaging for vestibular schwannoma (VS) may help guide surgical resection and reduce complications. Diffusion MRI based tractography has been used to identify cranial nerve trajectory, but intraoperative validation of this novel approach is challenging. Currently, validation is based on operative report descriptions of the course of cranial nerves, but yields a simplified picture of the three-dimensional (3D) course of CN VII. In this study, we investigate the accuracy of tractography with detailed patient-specific 3D-printed VS tumors. Design: Retrospective case review. Setting: Tertiary referral center. Participants: Twenty adult VS surgical candidates. Main Outcome Measures: We compared tractography with intraoperative 3D course of CN VII. The surgeons were blinded to tractography and drew the intraoperative course of the CN VII on a patient specific 3D-printed tumor model for detailed comparison with tractography. Results: Of 20 patients, one was excluded due to subtotal removal and inability to assess CN VII course. In the remaining 19 patients, 84% (16/19) tractography was successful. In 94% of tumors with tractography (15/16), the intraoperative description of CN VII course matched the tractography finding. The maximum distance, however, between tractography and intraoperative course of CN VII was 3.7 mm ± 4.2 mm. Conclusion: This study presents a novel approach to CN VII tractography validation in VS. Although descriptions of CN VII intraoperatively match tractography, caution is warranted as quantitative measures suggest a clinically significant distance between tractography and CN VII course

    Super-resolution Diffusion Tensor Imaging for Delineating the Facial Nerve in Patients with Vestibular Schwannoma

    Full text link
    Objectives  Predicting the course of cranial nerves (CNs) VII and VIII in the cerebellopontine angle on preoperative imaging for vestibular schwannoma (VS) may help guide surgical resection and reduce complications. Diffusion magnetic resonance imaging dMRI is commonly used for this purpose, but is limited by its resolution. We investigate the use of super-resolution reconstruction (SRR), where several different dMRIs are combined into one dataset. We hypothesize that SRR improves the visualization of the CN VII and VIII. Design  Retrospective case review. Setting  Tertiary referral center. SRR was performed on the basis of axial and parasagittal single-shot epiplanar diffusion tensor imaging on a 3.0-tesla MRI scanner. Participants  Seventeen adult patients with suspected neoplasms of the lateral skull base. Main Outcome Measures  We assessed separability of the two distinct nerves on fractional anisotropy (FA) maps, the tractography of the nerves through the cerebrospinal fluid (CSF), and FA in the CSF as a measure of noise. Results  SRR increases separability of the CN VII and VIII (16/17 vs. 0/17, p  = 0.008). Mean FA of CSF surrounding the nerves is significantly lower in SRRs (0.07 ± 0.02 vs. 0.13 ± 0.03 [axial images]/0.14 ± 0.05 [parasagittal images], p  = 0.00003/ p  = 0.00005). Combined scanning times (parasagittal and axial) used for SRR were shorter (8 minute 25 seconds) than a comparable high-resolution scan (15 minute 17 seconds). Conclusion  SRR improves the resolution of CN VII and VIII. The technique can be readily applied in the clinical setting, improving surgical counseling and planning in patients with VS
    corecore