2,357 research outputs found
An open--quantum--system formulation of particle decay
We consider an open quantum system which contains unstable states. The time
evolution of the system can be described by an effective non-hermitian
Hamiltonian H_{eff}, in accord with the Wigner--Weisskopf approximation, and an
additional term of the Lindblad form, the socalled dissipator. We show that,
after enlarging the original Hilbert space by states which represent the decay
products of the unstable states, the non-hermitian part of H_{eff} --the
``particle decay''-- can be incorporated into the dissipator of the enlarged
space via a specific Lindblad operator. Thus the new formulation of the time
evolution on the enlarged space has a hermitian Hamiltonian and is probability
conserving. The equivalence of the new formulation with the original one
demonstrates that the time evolution which is governed by a non-hermitian
Hamiltonian and a dissipator of the Lindblad form is nevertheless completely
positive, just as systems with hermitian Hamiltonians.Comment: 8 page
A Tableaux Calculus for Reducing Proof Size
A tableau calculus is proposed, based on a compressed representation of
clauses, where literals sharing a similar shape may be merged. The inferences
applied on these literals are fused when possible, which reduces the size of
the proof. It is shown that the obtained proof procedure is sound,
refutationally complete and allows to reduce the size of the tableau by an
exponential factor. The approach is compatible with all usual refinements of
tableaux.Comment: Technical Repor
Optical observation of the 3sÏgF³Πu Rydberg state of Nâ
Using ultrahigh-resolution 1 XUV+1 UV two-photon ionization laser spectroscopy, the F (3)Pi(u)<--X (1)Sigma(g) (+)(0,0) transition of N(2) has been optically observed for the first time, and the 3s sigma(g)F (3)Pi(u)(upsilon=0) Rydberg level fully characterized with rotational resolution. The experimental spectroscopic parameters and predissociation level widths suggest strong interactions between the F state and the 3p pi(u)G (3)Pi(u) Rydberg and C(') (3)Pi(u) valence states, analogous to those well known in the case of the isoconfigurational (1)Pi(u) states.The Molecular Atmospheric Physics MAP Program of
the Netherlands Foundation for Fundamental Research on
Matter FOM, and the Discovery Program of the Australian
Research Council are gratefully acknowledged for their support
On the fundamental representation of Borcherds algebras with one imaginary simple root
Borcherds algebras represent a new class of Lie algebras which have almost
all the properties that ordinary Kac-Moody algebras have, and the only major
difference is that these generalized Kac-Moody algebras are allowed to have
imaginary simple roots. The simplest nontrivial examples one can think of are
those where one adds ``by hand'' one imaginary simple root to an ordinary
Kac-Moody algebra. We study the fundamental representation of this class of
examples and prove that an irreducible module is given by the full tensor
algebra over some integrable highest weight module of the underlying Kac-Moody
algebra. We also comment on possible realizations of these Lie algebras in
physics as symmetry algebras in quantum field theory.Comment: 8 page
Excitation of weakly bound Rydberg electrons by half-cycle pulses
The interaction of a weakly bound Rydberg electron with an electromagnetic
half-cycle pulse (HCP) is described with the help of a multidimensional
semiclassical treatment. This approach relates the quantum evolution of the
electron to its underlying classical dynamics. The method is nonperturbative
and is valid for arbitrary spatial and temporal shapes of the applied HCP. On
the basis of this approach angle- and energy-resolved spectra resulting from
the ionization of Rydberg atoms by HCPs are analyzed. The different types of
spectra obtainable in the sudden-impact approximation are characterized in
terms of the appearing semiclassical scattering phenomena. Typical
modifications of the spectra originating from finite pulse effects are
discussed.Comment: Submitted to Phys. Rev.
Ion Collisions in Very Strong Electric Fields
A Classical Trajectory Monte Carlo (CTMC) simulation has been made of
processes of charge exchange and ionization between an hydrogen atom and fully
stripped ions embedded in very strong static electric fields (
V/m), which are thought to exist in cosmic and laser--produced plasmas.
Calculations show that the presence of the field affects absolute values of the
cross sections, enhancing ionization and reducing charge exchange. Moreover,
the overall effect depends upon the relative orientation between the field and
the nuclear motion. Other features of a null-field situation, such as scaling
laws, are revisited.Comment: Latex, 13 pages, 11 figures (available upon request), to be published
in Journal of Physics
Electroneutrality and the Friedel sum rule in a Luttinger liquid
Screening in one-dimensional metals is studied for arbitrary
electron-electron interactions. It is shown that for finite-range interactions
(Luttinger liquid) electroneutrality is violated. This apparent inconsistency
can be traced to the presence of external screening gates responsible for the
effectively short-ranged Coulomb interactions. We also draw attention to the
breakdown of linear screening for wavevectors close to 2 K_f.Comment: 4 pages REVTeX, incl one figure, to appear in Phys.Rev.Let
Decoherence modes of entangled qubits within neutron interferometry
We study two different decoherence modes for entangled qubits by considering
a Liouville - von Neumann master equation. Mode A is determined by projection
operators onto the eigenstates of the Hamiltonian and mode B by projectors onto
rotated states. We present solutions for general and for Bell diagonal states
and calculate for the later the mixedness and the amount of entanglement given
by the concurrence.
We propose a realization of the decoherence modes within neutron
interferometry by applying fluctuating magnetic fields. An experimental test of
the Kraus operator decomposition describing the evolution of the system for
each mode is presented.Comment: 15 pages, 5 figure
- âŠ