26 research outputs found
Hyperarticulation aids learning of new vowels in a developmental speech acquisition model
Many studies emphasize the importance of infant-directed speech: stronger articulated, higher-quality speech helps infants to better distinguish different speech sounds. This effect has been widely investigated in terms of the infant's perceptual capabilities, but few studies examined whether infant-directed speech has an effect on articulatory learning. In earlier studies, we developed a model that learns articulatory control for a 3D vocal tract model via goal babbling. Exploration is organized in the space of outcomes. This so called goal space is generated from a set of ambient speech sounds. Similarly to how speech from the environment shapes infant's speech perception, the data from which the goal space is learned shapes the later learning process: it determines which sounds the model is able to discriminate, and thus, which sounds it can eventually learn to produce. We investigate how speech sound quality in early learning affects the model's capability to learn new vowel sounds. The model is trained either on hyperarticulated (tense) or on hypoarticulated (lax) vowels. Then we retrain the model with vowels from the other set. Results show that new vowels can be acquired although they were not included in early learning. There is, however, an effect of learning order, showing that models first trained on the stronger articulated tense vowels easier accommodate to new vowel sounds later on
Recommended from our members
Modulation transfer function measurements of HgCdTe long wavelength infrared arrays for the Near-Earth Object Surveyor
The modulation transfer function (MTF) is a useful measure in image quality analysis and performance budget determination. Sensitive long wavelength infrared (LWIR) detectors for astronomical space telescopes require slight modifications to the existing MTF measurement methods due to the increased prevalence of high dark current pixels. Presented here are the specifics of a modified slanted edge method to determine the MTF in λc > 10 μm HgCdTe detectors to be used with the planned Near-Earth Object Surveyor Mission. The measured MTF at Nyquist using 6 μm light is 0.22 ± 0.02 and is 0.25 ± 0.02 using 10 μm light for both 250 and 350 mV of applied reverse bias. These measurements are from edge spread functions with median signal values around 50% of the well depth, as the MTF is expected to change with signal value due to two brighter-fatter type effects. The expected trends caused by the influences of these two effects and the expected trends with wavelength of absorbed photons are all observed. © 2022 Society of Photo-Optical Instrumentation Engineers (SPIE).Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
Testing results from pathfinder HgCdTe infrared detectors for the Near-Earth Object Surveyor mission
Near-Earth Object (NEO) Surveyor, a NASA planetary defense space mission, is currently in Phase B with a launch date in 2026. NEO Surveyor is an infrared telescope designed to detect and characterize Potentially Hazardous Asteroids (PHAs). The required sensors leverage the space flight heritage and further development over the last 15 years of HgCdTe arrays to detect infrared light spanning from 4 to 10 µm. NEO Surveyor will employ eight passively cooled HgCdTe Sensor Chip Assemblies (SCAs) across two bands, each band consisting of a 1x4 SCA mosaic to cover a wide field of view. Four of these SCAs have a >5.5 µm cutoff wavelength and cover the shorter 4-5.2 µm (NC1) band, while four SCAs will have a >10.5 µm cutoff wavelength and span the longer 6-10 µm (NC2) band. We present calibration and performance results from two recently produced pathfinder SCAs, one for each band, manufactured by Teledyne Imaging Sensors with development guidance from the University of Arizona, the University of Rochester, and JPL. Both devices demonstrate the requisite low dark current, high well depth, and high quantum efficiency, exceeding mission requirements. © 2022 SPIE.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
Status update on the NEO Surveyor detector development
NEO Surveyor is a NASA Planetary Defense Coordination Office mission designed to detect and track >2/3 of potentially hazardous asteroids >140 m in diameter during its 5-year prime mission. NEO Surveyor entered Phase B in June 2021 and is scheduled to launch in 2026 to survey the sky in two infrared bands. The infrared detectors are a key technology for the mission and have been the subject of focused development for more than a decade. In this paper, we report test results for recently produced detectors and describe design elements of the focal plane module relevant to operations for NEO Surveyor. © 2022 SPIE.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]