335 research outputs found

    The parton to hadron phase transition observed in Pb+Pb collisions at 158 GeV per nucleon

    Get PDF
    Hadronic yields and yield ratios observed in Pb+Pb collisions at the SPS energy of 158 GeV per nucleon are known to resemble a thermal equilibrium population at T=180 +/- 10 MeV, also observed in elementary e+ + e- to hadron data at LEP. We argue that this is the universal consequence of the QCD parton to hadron phase transition populating the maximum entropy state. This state is shown to survive the hadronic rescattering and expansion phase, freezing in right after hadronization due to the very rapid longitudinal and transverse expansion that is inferred from Bose-Einstein pion correlation analysis of central Pb+Pb collisions.Comment: 10 pages, 2 figure

    The parton-hadron phase transition in central nuclear collisions at the CERN SPS

    Get PDF
    A selection of recent data referring to Pb+Pb collisions at the SPS CERN energy of 158 GeV per nucleon is presented which might describe the state of highly excited strongly interacting matter both above and below the deconfinement to hadronization (phase) transition predicted by lattice QCD. A tentative picture emerges in which a partonic state is indeed formed in central Pb+Pb collisions which hadronizes at about T = 185 MeV, and expands its volume more than tenfold, cooling to about 120 MeV before hadronic collisions cease. We suggest further that all SPS collisions, from central S+S onward, reach that partonic phase, the maximum energy density increasing with more massive collision systems

    Bulk hadron production at AGS and SPS

    Get PDF
    With new data available from the SPS, at 40 and 80 GeV/A, I review the systematics of bulk hadron multiplicities, with prime focus on strangeness production. The classical concept of strangeness enhancement in central AA collisions is reviewed, in view of the statistical hadronization model which suggests to understand strangeness enhancement to arise chiefly in the transition from the canonical to the grand canonical version of that model. I. e. enhancement results from the fading away of canonical suppression. The model also captures the striking strangeness maximum observed in the vicinity of sqrt s approx 8 GeV. A puzzle remains in the understanding of apparent grand canonical order at the lower SPS, and at AGS energies

    Quark Matter 99 summary: hadronic signals

    Get PDF
    I review the new data presented at QM99. The main emphasis is placed on the CERN SPS hadron production systematics concluding that the boundary between a partonic and a hadronic phase has now been located at T=180±10 MeVT=180 \pm10\:MeV and ϵ≈1 GeV\epsilon \approx 1 \:GeV per fm3fm^3
    • …
    corecore