214 research outputs found
04251 -- Imaging Beyond the Pinhole Camera
From 13.06.04 to 18.06.04, the
Dagstuhl Seminar 04251 ``Imaging Beyond the Pin-hole Camera. 12th Seminar on Theoretical Foundations of Computer Vision\u27\u27 was held
in the International Conference and Research Center (IBFI),
Schloss Dagstuhl.
During the seminar, several participants presented their current
research, and ongoing work and open problems were discussed. Abstracts of
the presentations given during the seminar as well as abstracts of
seminar results and ideas are put together in this paper. The first section
describes the seminar topics and goals in general.
Links to extended abstracts or full papers are provided, if available
06241 Abstracts Collection -- Human Motion - Understanding, Modeling, Capture and Animation. 13th Workshop
From 11.06.06 to 16.06.06, the Dagstuhl Seminar 06241 ``Human Motion - Understanding, Modeling, Capture and Animation. 13th Workshop "Theoretical Foundations of Computer Vision"\u27\u27 was held
in the International Conference and Research Center (IBFI),
Schloss Dagstuhl.
During the seminar, several participants presented their current
research, and ongoing work and open problems were discussed. Abstracts of
the presentations given during the seminar as well as abstracts of
seminar results and ideas are put together in this paper. The first section
describes the seminar topics and goals in general
Pose Estimation of Free-form Objects: Theory and Experiments
In this report we present geometric foundations and an algorithmic approach to deal with the 2D-3D pose estimation problem for free-form surface models. This work is an extension to earlier studies presented in [29]. The discussion of 1D contour models in [29] is extended to 2D free-form surface models. We use a parametric representation of surfaces and apply Fourier transformations to gain low-pass descriptions of objects. We present an algorithm for pose estimation, which uses the silhouette of the object as pictorial information and recovers the 3D pose of the object even for changing aspects of the object during image sequences. We further present extensions to couple surface and contour information on objects and show the potential of our chosen approach for complex objects and scenes
04131 Abstracts Collection -- Geometric Properties from Incomplete Data
From 21.03.04 to 26.03.04, the Dagstuhl Seminar 04131 ``Geometric Properties from Incomplete Data\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl.
During the seminar, several participants presented their current
research, and ongoing work and open problems were discussed. Abstracts of
the presentations given during the seminar as well as abstracts of
seminar results and ideas are put together in this paper. The first section
describes the seminar topics and goals in general.
Links to extended abstracts or full papers are provided, if available
Connectivity calculus of fractal polyhedrons
The paper analyzes the connectivity information (more precisely, numbers of tunnels and their homological (co)cycle classification) of fractal polyhedra. Homology chain contractions and its combinatorial counterparts, called homological spanning forest (HSF), are presented here as an useful topological tool, which codifies such information and provides an hierarchical directed graph-based representation of the initial polyhedra. The Menger sponge and the Sierpiński pyramid are presented as examples of these computational algebraic topological techniques and results focussing on the number of tunnels for any level of recursion are given. Experiments, performed on synthetic and real image data, demonstrate the applicability of the obtained results. The techniques introduced here are tailored to self-similar discrete sets and exploit homology notions from a representational point of view. Nevertheless, the underlying concepts apply to general cell complexes and digital images and are suitable for progressing in the computation of advanced algebraic topological information of 3-dimensional objects
Eye status based on eyelid detection a driver assistance system
Fatigue and driver drowsiness monitoring is an important subject for designing driver assistance systems. The measurement of eye closure is a fundamental step for driver awareness detection. We propose a method which is based on eyelid detection and the measurement of the distance between the eyelids. First, the face and the eyes of the driver are localized. After extracting the eye region, the proposed algorithm detects eyelids and computes the percentage of eye closure. Experimental results are performed on the BioID database. Our comparisons show that the proposed method outperforms state-of-the-art methods.
Document type: Part of book or chapter of boo
Comparison of two 3D tracking paradigms for freely flying insects
In this paper, we discuss and compare state-of-the-art 3D tracking paradigms for flying insects such as Drosophila melanogaster. If two cameras are employed to estimate the trajectories of these identical appearing objects, calculating stereo and temporal correspondences leads to an NP-hard assignment problem. Currently, there are two different types of approaches discussed in the literature: probabilistic approaches and global correspondence selection approaches. Both have advantages and limitations in terms of accuracy and complexity. Here, we present algorithms for both paradigms. The probabilistic approach utilizes the Kalman filter for temporal tracking. The correspondence selection approach calculates the trajectories based on an overall cost function. Limitations of both approaches are addressed by integrating a third camera to verify consistency of the stereo pairings and to reduce the complexity of the global selection. Furthermore, a novel greedy optimization scheme is introduced for the correspondence selection approach. We compare both paradigms based on synthetic data with ground truth availability. Results show that the global selection is more accurate, while the previously proposed tracking-by-matching (probabilistic) approach is causal and feasible for longer tracking periods and very high target densities. We further demonstrate that our extended global selection scheme outperforms current correspondence selection approaches in tracking accuracy and tracking time
- …