54 research outputs found
The role of neuronavigation in intracranial endoscopic procedures
In occlusive hydrocephalus, cysts and some ventricular tumours, neuroendoscopy has replaced shunt operations and microsurgery. There is an ongoing discussion if neuronavigation should routinely accompany neuroendoscopy or if its use should be limited to selected cases. In this prospective clinical series, the role of neuronavigation during intracranial endoscopic procedures was investigated. In 126 consecutive endoscopic procedures (endoscopic third ventriculostomy, ETV, n = 65; tumour biopsy/resection, n = 36; non-tumourous cyst fenestration, n = 23; abscess aspiration and hematoma removal, n = 1 each), performed in 121 patients, neuronavigation was made available. After operation and videotape review, the surgeon had to categorize the role of neuronavigation: not beneficial; beneficial, but not essential; essential. Overall, neuronavigation was of value in more than 50% of the operations, but its value depended on the type of the procedure. Neuronavigation was beneficial, but not essential in 16 ETVs (24.6%), 19 tumour biopsies/resections (52.7%) and 14 cyst fenestrations (60.9%). Neuronavigation was essential in 1 ETV (2%), 11 tumour biopsies/resections (30.6%) and 8 cyst fenestrations (34.8%). Neuronavigation was not needed/not used in 48 ETVs (73.9%), 6 endoscopic tumour operations (16.7%) and 1 cyst fenestration (4.3%). For ETV, neuronavigation mostly is not required. In the majority of the remaining endoscopic procedures, however, neuronavigation is at least beneficial. This finding suggests integrating neuronavigation into the operative routine in endoscopic tumour operations and cyst fenestrations
Guiding Brain Tumor Resection Using Surface-Enhanced Raman Scattering Nanoparticles and a Hand-Held Raman Scanner
The current difficulty in visualizing the true extent of malignant brain tumors during surgical resection represents one of the major reasons for the poor prognosis of brain tumor patients. Here, we evaluated the ability of a hand-held Raman scanner, guided by surface-enhanced Raman scattering (SERS) nanoparticles, to identify the microscopic tumor extent in a genetically engineered RCAS/tv-a glioblastoma mouse model. In a simulated intraoperative scenario, we tested both a static Raman imaging device and a mobile, hand-held Raman scanner. We show that SERS image-guided resection is more accurate than resection using white light visualization alone. Both methods complemented each other, and correlation with histology showed that SERS nanoparticles accurately outlined the extent of the tumors. Importantly, the hand-held Raman probe not only allowed near real-time scanning, but also detected additional microscopic foci of cancer in the resection bed that were not seen on static SERS images and would otherwise have been missed. This technology has a strong potential for clinical translation because it uses inert gold-silica SERS nanoparticles and a hand-held Raman scanner that can guide brain tumor resection in the operating room
Pathogenesis, diagnosis and management of pneumorrhachis
Pneumorrhachis (PR), the presence of intraspinal air, is an exceptional but eminent radiographic finding, accompanied by different aetiologies and possible pathways of air entry into the spinal canal. By reviewing the literature and analysing a personal case of traumatic cervical PR after head injury, we present current data regarding the pathoanatomy, clinical and radiological presentation, diagnosis and differential diagnosis and treatment modalities of patients with PR and associated pathologies to highlight this uncommon phenomenon and outline aetiology-based guidelines for the practical management of PR. Air within the spinal canal can be divided into primary and secondary PR, descriptively classified into extra- or intradural PR and aetiologically subsumed into iatrogenic, traumatic and nontraumatic PR. Intraspinal air is usually found isolated not only in the cervical, thoracic and, less frequently, the lumbosacral regions but can also be located in the entire spinal canal. PR is almost exceptional associated with further air distributions in the body. The pathogenesis and aetiologies of PR are multifold and can be a diagnostic challenge. The diagnostic procedure should include spinal CT, the imaging tool of choice. PR has to be differentiated from free intraspinal gas collections and the coexistence of air and gas within the spinal canal has to be considered differential diagnostically. PR usually represents an asymptomatic epiphenomenon but can also be symptomatic by itself as well as by its underlying pathology. The latter, although often severe, might be concealed and has to be examined carefully to enable adequate patient treatment. The management of PR has to be individualized and frequently requires a multidisciplinary regime
За кадры. 1976. № 23 (1938)
Почетная грамота МинистерстваЧесть и слава трудуИспользовать резервы. Решения XXV съезда КПСС — в жизнь / О. ВадутовЛучшие в институте / О. ЖуковаСельская профессия политехников / С. ХабибулинЖизнь в борьбе / Ф. МежлаукГоды юности / Г. Тофорова"Если он за что-нибудь возьмется, то дело выйдет у него наверняка". Воспоминания томских политехников / И. Т. ЛозовскийИз выступлений С. М. КироваПразднование юбилея С. М. Кирова в ТПИИдет подготовка / Б. СесюнинДелу - время. Зачетка трудового семестра / И. БогдановаРайонный слет народных дружинНаш, из оперного / Г. Сергеев
- …