1,911 research outputs found
Semilocal momentum-space regularized chiral two-nucleon potentials up to fifth order
We introduce new semilocal two-nucleon potentials up to fifth order in the
chiral expansion. We employ a simple regularization approach for the
pion-exchange contributions which (i) maintains the long-range part of the
interaction, (ii) is implemented in momentum space and (iii) can be
straightforwardly applied to regularize many-body forces and current operators.
We discuss in detail the two-nucleon contact interactions at fourth order and
demonstrate that three terms out of fifteen used in previous calculations can
be eliminated via suitably chosen unitary transformations. The removal of the
redundant contact terms results in a drastic simplification of the fits to
scattering data and leads to interactions which are much softer (i.e. more
perturbative) than our recent semilocal coordinate-space regularized
potentials. Using the pion-nucleon low-energy constants from matching
pion-nucleon Roy-Steiner equations to chiral perturbation theory, we perform a
comprehensive analysis of nucleon-nucleon scattering and the deuteron
properties up to fifth chiral order and study the impact of the leading F-wave
two-nucleon contact interactions which appear at sixth order. The resulting
chiral potentials lead to an outstanding description of the proton-proton and
neutron-proton scattering data from the self-consistent Granada-2013 database
below the pion production threshold, which is significantly better than for any
other chiral potential. For the first time, the chiral potentials match in
precision and even outperform the available high-precision phenomenological
potentials, while the number of adjustable parameters is, at the same time,
reduced by about ~40%. Last but not least, we perform a detailed error analysis
and, in particular, quantify for the first time the statistical uncertainties
of the fourth- and the considered sixth-order contact interactions.Comment: 57 pages, 17 figures, 19 table
The upper-atmosphere extension of the ICON general circulation model (version: Ua-icon-1.0)
How the upper-atmosphere branch of the circulation contributes to and interacts with the circulation of the middle and lower atmosphere is a research area with many open questions. Inertia-gravity waves, for instance, have moved in the focus of research as they are suspected to be key features in driving and shaping the circulation. Numerical atmospheric models are an important pillar for this research. We use the ICOsahedral Non-hydrostatic (ICON) general circulation model, which is a joint development of the Max Planck Institute for Meteorology (MPI-M) and the German Weather Service (DWD), and provides, e.g., local mass conservation, a flexible grid nesting option, and a non-hydrostatic dynamical core formulated on an icosahedral-triangular grid. We extended ICON to the upper atmosphere and present here the two main components of this new configuration named UA-ICON: an extension of the dynamical core from shallow- to deep-atmosphere dynamics and the implementation of an upper-atmosphere physics package. A series of idealized test cases and climatological simulations is performed in order to evaluate the upper-atmosphere extension of ICON. © Author(s) 2019
Echo of the Quantum Phase Transition of CeCuAu in XPS: Breakdown of Kondo Screening
We present an X-ray photoemission study of the heavy-fermion system
CeCuAu across the magnetic quantum phase transition of this
compound at temperatures above the single-ion Kondo temperature . In
dependence of the Au concentration we observe a sudden change of the
-occupation number and the core-hole potential at the
critical concentration . We interpret these findings in the framework
of the single-impurity Anderson model. Our results are in excellent agreement
with findings from earlier UPS measurements %\cite{klein08qpt} and provide
further information about the precursors of quantum criticality at elevated
temperatures.Comment: 5 pages, 3 figures; published version, references updated, minor
changes in wordin
Inference of Markovian Properties of Molecular Sequences from NGS Data and Applications to Comparative Genomics
Next Generation Sequencing (NGS) technologies generate large amounts of short
read data for many different organisms. The fact that NGS reads are generally
short makes it challenging to assemble the reads and reconstruct the original
genome sequence. For clustering genomes using such NGS data, word-count based
alignment-free sequence comparison is a promising approach, but for this
approach, the underlying expected word counts are essential.
A plausible model for this underlying distribution of word counts is given
through modelling the DNA sequence as a Markov chain (MC). For single long
sequences, efficient statistics are available to estimate the order of MCs and
the transition probability matrix for the sequences. As NGS data do not provide
a single long sequence, inference methods on Markovian properties of sequences
based on single long sequences cannot be directly used for NGS short read data.
Here we derive a normal approximation for such word counts. We also show that
the traditional Chi-square statistic has an approximate gamma distribution,
using the Lander-Waterman model for physical mapping. We propose several
methods to estimate the order of the MC based on NGS reads and evaluate them
using simulations. We illustrate the applications of our results by clustering
genomic sequences of several vertebrate and tree species based on NGS reads
using alignment-free sequence dissimilarity measures. We find that the
estimated order of the MC has a considerable effect on the clustering results,
and that the clustering results that use a MC of the estimated order give a
plausible clustering of the species.Comment: accepted by RECOMB-SEQ 201
High-temperature signatures of quantum criticality in heavy fermion systems
We propose a new criterion for distinguishing the Hertz-Millis (HM) and the
local quantum critical (LQC) mechanism in heavy fermion systems with a magnetic
quantum phase transition (QPT). The criterion is based on our finding that the
spin screening of Kondo ions can be completely suppressed by the RKKY coupling
to the surrounding magnetic ions even without magnetic ordering and that,
consequently, the signature of this suppression can be observed in
spectroscopic measurements above the magnetic ordering temperature. We apply
the criterion to high-resolution photoemission (UPS) measurements on
CeCuAu and conclude that the QPT in this system is dominated by
the LQC scenario.Comment: Inveted paper, International Conference on Magnetism, ICM 2009,
Karlsruhe. Published version, added discussions of the relevance of
Fermi-surface fluctuations and of a structural transition near the QC
The Legal System\u27s Use of Epidemiology
Both law and science are truth-seeking endeavors. In at least one respect, lawyers and scientists are like Agent Mulder on the X-Files: we believe that the truth is out there and our goal is to find it. This article is devoted to exploring and improving the means by which law relies on scientific disciplines, particularly epidemiology, to ascertain the truth
Transmission of grapevine yellows by Oncopsis alni (Schrank) (Auchenorrhyncha: Macropsinae)
Research Not
High Resolution Photoemission Study on Low-T_K Ce Systems: Kondo Resonance, Crystal Field Structures, and their Temperature Dependence
We present a high-resolution photoemission study on the strongly correlated
Ce-compounds CeCu_6, CeCu_2Si_2, CeRu_2Si_2, CeNi_2Ge_2, and CeSi_2. Using a
normalization procedure based on a division by the Fermi-Dirac distribution we
get access to the spectral density of states up to an energy of 5 k_BT above
the Fermi energy E_F. Thus we can resolve the Kondo resonance and the crystal
field (CF) fine-structure for different temperatures above and around the Kondo
temperature T_K. The CF peaks are identified with multiple Kondo resonances
within the multiorbital Anderson impurity model. Our theoretical 4f spectra,
calculated from an extended non-crossing approximation (NCA), describe
consistently the observed photoemission features and their temperature
dependence. By fitting the NCA spectra to the experimental data and
extrapolating the former to low temperatures, T_K can be extracted
quantitatively. The resulting values for T_K and the crystal field energies are
in excellent agreement with the results from bulk sensitive measurements, e.g.
inelastic neutron scattering.Comment: 16 two-column pages, 10 figure
- …