51 research outputs found

    Acetylene degradation by new isolates of aerobic bacteria and comparison of acetylene hydratase enzymes

    No full text
    Aerobic acetylene-degrading bacteria were isolated from soil samples. Two isolates were assigned to the species Rhodococcus opacus, two others to Rhodococcus ruber and Gordona sp. They were compared with known strains of aerobic acetylene-, cyanide-, or nitrile-utilizing bacteria. The acetylene hydratases of R. opacus could be measured in cell-free extracts only in the presence of a strong reductant like titanium(III) citrate. Expression of these enzymes was molybdenum-dependent. Acetylene hydratases in cell-free extracts of R. ruber and Gordona spp. did not require addition of reductants. No cross-reactivity could be found between cell-free extracts of any of these aerobic isolates and antibodies raised against the acetylene hydratase of the strictly anaerobic fermenting bacterium Pelobacter acetylenicus. These results show that acetylene hydratases are a biochemically heterogeneous group of enzymes

    Effects of T4 Lysozyme Release from Transgenic Potato Roots on Bacterial Rhizosphere Communities Are Negligible Relative to Natural Factors

    No full text
    Rhizosphere bacterial communities of two transgenic potato lines which produce T4 lysozyme for protection against bacterial infections were analyzed in comparison to communities of wild-type plants and transgenic controls not harboring the lysozyme gene. Rhizosphere samples were taken from young, flowering, and senescent plants at two field sites in three consecutive years. The communities were characterized in a polyphasic approach. Cultivation-dependent methods included heterotrophic plate counts, determination of species composition and diversity based on fatty acid analysis of isolates, and community level catabolic profiling. Cultivation-independent analyses were based on denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments amplified from rhizosphere DNA using primers specific for Bacteria, Actinomycetales, or α- or β-Proteobacteria. Several bands of the DGGE patterns were further characterized by sequence analysis. All methods revealed that environmental factors related to season, field site, or year but not to the T4 lysozyme expression of the transgenic plants influenced the rhizosphere communities. For one of the T4 lysozyme-producing cultivars, no deviation in the rhizosphere communities compared to the control lines was observed. For the other, differences were detected at some of the samplings between the rhizosphere community structure and those of one or all other cultivars which were not attributable to T4 lysozyme production but most likely to differences observed in the growth characteristics of this cultivar

    Phylogeny of the Genus Nocardia Based on Reassessed 16S rRNA Gene Sequences Reveals Underspeciation and Division of Strains Classified as Nocardia asteroides into Three Established Species and Two Unnamed Taxons

    No full text
    Conventional identification of Nocardia in the routine laboratory remains problematic due to a paucity of reliable phenotypic tests and due to the yet-unresolved taxonomy of strains classified as belonging to the species Nocardia asteroides, which comprises the type strain and isolates with drug pattern types II and VI. The 16S rRNA gene of 74 representative strains of the genus Nocardia, encompassing 25 established species, was sequenced in order to provide a molecular basis for accurate species identification and with the aim of reassessing the phylogeny of taxons assigned to the species N. asteroides. The result of this phylogenetic analysis confirms that the interspecies heterogeneity of closely related nocardial species can be considerably low (a sequence divergence of only 0.5% was found between N. paucivorans and N. brevicatena). We observed a sequence microheterogeneity (sequence divergence of fewer than five bases) in 8 of 11 species of which more than one strain in the species was studied. At least 10 taxons were found that merit description as new species. Strains previously classified as N. asteroides fell into five distinct phylogenetic groups: the type strain cluster (N. asteroides sensu strictu), N. abscessus, N. cyriacigeorgica, and two clusters closely related to N. carnea or N. flavorosea. The strains within the latter two groups probably represent new species, pending further genetic and phenotypic evaluation. Restricted phenotypic data revealed that N. abscessus, N. cyriacigeorgica, and the two Nocardia species taxons are equivalent to drug patterns I, VI, and II, respectively. In the future, these data will help in finding species-specific markers after adoption of a more precise nomenclature for isolates closely related to N. asteroides and unravel confusing phenotypic data obtained in the past for unresolved groups of strains that definitely belong to separate taxons from a phylogenetic point of view

    Improved Identification of Mycobacteria by Using the Microbial Identification System in Combination with Additional

    No full text
    The MIDI automated Microbial Identification System (MIS) uses gas chromatography (GC) analysis of whole-cell fatty acid methyl esters (FAMEs) between 9 and 20 carbons in length to characterize a wide range of bacterial genera and species, including mycobacteria. Mycolic acid cleavage products (MACPs) with chain lengths of C 22 to C 26 are not released by MIDI sample preparation of mycobacteria. Therefore, the MIS library search report often matches several mycobacterial species without any significant difference in the similarity indices. The problem is solved by adding trimethylsulfonium hydroxide (TMSH) instead of sodium sulfate in the last step of sample preparation, thus allowing the identification of MACPs in addition to FAMEs. Only one GC run parameter has to be changed: the temperature program must be extended from 260 to 310°C. The MIS library search report for the identification of bacteria is not disturbed by TMSH. The combination of conventional library search report with the information of typical MACP patterns yields significantly better discrimination of mycobacterial species than the MIDI method allows. The Microbial Identification System (MIS; Microbial ID, Newark, Del.) is a well-established fully automated gas chromatography (GC) analytical system which identifies bacteria and fungi based on their unique fatty acid profiles (6, 9, 14)
    • …
    corecore