5,278 research outputs found

    Quaternary quadratic lattices over number fields

    Full text link
    We relate proper isometry classes of maximal lattices in a totally definite quaternary quadratic space (V,q) with trivial discriminant to certain equivalence classes of ideals in the quaternion algebra representing the Clifford invariant of (V,q). This yields a good algorithm to enumerate a system of representatives of proper isometry classes of lattices in genera of maximal lattices in (V,q)

    Determination of the resistivity anisotropy of SrRuO3_{3} by measuring the planar Hall effect

    Full text link
    We have measured the planar Hall effect in epitaxial thin films of the itinerant ferromagnet SrRuO3 patterned with their current paths at different angles relative to the crystallographic axes. Based on the results, we have determined that SrRuO3 exhibits small resistivity anisotropy in the entire temperature range of our measurements (between 2 to 300 K); namely, both above and below its Curie temperature (~150 K). It means that in addition to anisotropy related to magnetism, the resistivity anisotropy of SrRuO3 has an intrinsic, nonmagnetic source. We have found that the two sources of anisotropy have competing effects

    Quaternion algebras with the same subfields

    Get PDF
    G. Prasad and A. Rapinchuk asked if two quaternion division F -algebras that have the same subfields are necessarily isomorphic. The answer is known to be "no" for some very large fields. We prove that the answer is "yes" if F is an extension of a global field K so that F /K is unirational and has zero unramified Brauer group. We also prove a similar result for Pfister forms and give an application to tractable fields

    Financial stability evaluation of banks of the Russian Federation

    Get PDF
    In this paper we propose the model for evaluating financial stability of the Russian Federation banks by using discriminatory analysis. The statistical significance of the model was established. Critical value of the resulting was measured. The result of this research can be used in the area of banking

    High transport currents in mechanically reinforced MgB2 wires

    Full text link
    We prepared and characterized monofilamentary MgB2 wires with a mechanically reinforced composite sheath of Ta(Nb)/Cu/steel, which leads to dense filaments and correspondingly high transport currents up to Jc = 10^5 A/cm^2 at 4.2 K, self field. The reproducibility of the measured transport currents was excellent and not depending on the wire diameter. Using different precursors, commercial reacted powder or an unreacted Mg/B powder mixture, a strong influence on the pinning behaviour and the irreversibility field was observed. The critical transport current density showed a nearly linear temperature dependency for all wires being still 52 kA/cm^2 at 20 K and 23 kA/cm^2 at 30 K. Detailed data for Jc(B,T) and Tc(B) were measured.Comment: 21 pages, 13 figures, revised version, to be published in Supercond. Sci. Techno

    Refinement of primary Si in hypereutectic Al-Si alloys by intensive melt shearing

    Get PDF
    Hypereutectic Al-Si based alloys are gaining popularity for applications where a combination of light weight and high wear resistance is required. The high wear resistance arising from the hard primary Si particles comes at the price of extremely poor machine tool life. To minimize machining problems while exploiting outstanding wear resistance, the primary Si particles must be controlled to a uniform small size and uniform spatial distribution. The current industrial means of refining primary Si chemically by the addition of phosphorous suffers from a number of problems. In the present paper an alternative, physical means of refining primary Si by intensive shearing of the melt prior to casting is investigated. Al-15wt%Si alloy has been solidified under varying casting conditions (cooling rate) and the resulting microstructures have been studied using microscopy and quantitative image analysis. Primary Si particles were finer, more compact in shape and more numerous with increasing cooling rate. Intensive melt shearing led to greater refinement and more enhanced nucleation of primary Si than was achieved by adding phosphorous. The mechanism of enhanced nucleation is discussed.EPSRC (grant EP/H026177/1)

    Band gap bowing of binary alloys: Experimental results compared to theoretical tight-binding supercell calculations for CdZnSe

    Full text link
    Compound semiconductor alloys of the type ABC find widespread applications as their electronic bulk band gap varies continuously with x, and therefore a tayloring of the energy gap is possible by variation of the concentration. We model the electronic properties of such semiconductor alloys by a multiband tight-binding model on a finite ensemble of supercells and determine the band gap of the alloy. This treatment allows for an intrinsic reproduction of band bowing effects as a function of the concentration x and is exact in the alloy-induced disorder. In the present paper, we concentrate on bulk CdZnSe as a well-defined model system and give a careful analysis on the proper choice of the basis set and supercell size, as well as on the necessary number of realizations. The results are compared to experimental results obtained from ellipsometric measurements of CdZnSe layers prepared by molecular beam epitaxy (MBE) and photoluminescence (PL) measurements on catalytically grown CdZnSe nanowires reported in the literature.Comment: 7 pages, 6 figure
    corecore