128 research outputs found
Nanovoid nucleation by vacancy aggregation and vacancy-cluster coarsening in high-purity metallic single crystals
A numerical model to estimate critical times required for nanovoid nucleation in high-purity aluminum single crystals subjected to shock loading is presented. We regard a nanovoid to be nucleated when it attains a size sufficient for subsequent growth by dislocation-mediated plasticity. Nucleation is assumed to proceed by means of diffusion-mediated vacancy aggregation and subsequent vacancy cluster coarsening. Nucleation times are computed by a combination of lattice kinetic Monte Carlo simulations and simple estimates of nanovoid cavitation pressures and vacancy concentrations. The domain of validity of the model is established by considering rate-limiting physical processes and theoretical strength limits. The computed nucleation times are compared to experiments suggesting that vacancy aggregation and cluster coarsening are feasible mechanisms of nanovoid nucleation in a specific subdomain of the pressure-strain rate-temperature space
Future prospects for mitosis-targeted antitumor therapies
Dysregulation of cell cycle progression is a hallmark of cancer cells. In recent years, efforts have been devoted to the development of new therapies that target proteins involved in cell cycle regulation and mitosis. Novel targeted antimitotic drugs include inhibitors of aurora kinase family, polo-like kinase 1, Mps1, Eg5, CENP-5 and the APC/cyclosome complex. While certain new inhibitors reached the clinical trial stage, most were discontinued due to negative results. However, these therapies should not be readily dismissed. Based on recent advances concerning their mechanisms of action, new strategies could be devised to increase their efficacy and promote further clinical trials. Here we discuss three main lines of action to empower these therapeutic approaches: increasing cell death signals during mitotic arrest, targeting senescent cells and facilitating antitumor immune response through immunogenic cell death (ICD). © 2021 The Author(s
Building Information Modeling for Cultural Heritage: The Management of Generative Process for Complex Historical Buildings
Building Information Modeling (BIM) enhances the sharing of information during the traditional process for new construction, but most of the time, it requires high levels of knowledge management for the historical digital model (H-BIM). The innovation in the Digital Cultural Heritage (DCH) domain is supported by the development of Information and Communications Technologies (ICT) and modern tools that are able to transmit morphological characteristics of the buildings in all their uniqueness. The latest research in the field of H-BIM shows a significant emergence of innovative methods and management initiatives for the generation of complex historical elements, leading to the confrontation of the paradigm of regularity (simple geometric shapes) with the new paradigm of complexity (historical building elements). This paper proves the benefits of the BIM for project management of the Centre Block of the Canadian Parliament in Ottawa, Ontario Canada, and shows the results obtained by the introduction of Advanced Modeling Techniques (AMT) during the generative process, reducing time and cost for the creation of the complex architectural and structural elements. The uniqueness of the forms of historical buildings is a real value to be transmitted throughout the building’s lifecycle with high Levels of Detail (LOD). Proper management of geometric primitives and Non-Uniform Rational Basis Spline (NURBS) models have guaranteed the conversion of spatial data (point clouds) from laser scanning and photogrammetry (geometric survey) into parametric applications. This paper explores the generative process of one of the most complex spaces within The Centre Block building of Parliament Hill—Confederation Hall
Expanded NK cells from umbilical cord blood and adult peripheral blood combined with daratumumab are effective against tumor cells from multiple myeloma patients
In this study we evaluated the potential of expanded NK cells (eNKs) from two sources combined with the mAbs daratumumab and pembrolizumab to target primary multiple myeloma (MM) cells ex vivo. In order to ascertain the best source of NK cells, we expanded and activated NK cells from peripheral blood (PB) of healthy adult donors and from umbilical cord blood (UCB). The resulting expanded NK (eNK) cells express CD16, necessary for carrying out antibody-dependent cellular cytotoxicity (ADCC). Cytotoxicity assays were performed on bone marrow aspirates of 18 MM patients and 4 patients with monoclonal gammopathy of undetermined significance (MGUS). Expression levels of PD-1 on eNKs and PD-L1 on MM and MGUS cells were also quantified. Results indicate that most eNKs obtained using our expansion protocol express a low percentage of PD-1+ cells. UCB eNKs were highly cytotoxic against MM cells and addition of daratumumab or pembrolizumab did not further increase their cytotoxicity. PB eNKs, while effective against MM cells, were significantly more cytotoxic when combined with daratumumab. In a minority of cases, eNK cells showed a detectable population of PD1+ cells. This correlated with low cytotoxic activity, particularly in UCB eNKs. Addition of pembrolizumab did not restore their activity. Results indicate that UCB eNKs are to be preferentially used against MM in the absence of daratumumab while PB eNKs have significant cytotoxic advantage when combined with this mAb
Patent Human Infections with the Whipworm, Trichuris trichiura, Are Not Associated with Alterations in the Faecal Microbiota
Background: The soil-transmitted helminth (STH), Trichuris trichiura colonises the human large intestine where it may
modify inflammatory responses, an effect possibly mediated through alterations in the intestinal microbiota. We
hypothesised that patent T. trichiura infections would be associated with altered faecal microbiota and that anthelmintic treatment would induce a microbiota resembling more closely that observed in uninfected individuals.
Materials and Methods: School children in Ecuador were screened for STH infections and allocated to 3 groups: uninfected, T. trichiura only, and mixed infections with T. trichiura and Ascaris lumbricoides. A sample of uninfected children and those with T. trichiura infections only were given anthelmintic treatment. Bacterial community profiles in faecal samples were studied by 454 pyrosequencing of 16 S rRNA genes.
Results: Microbiota analyses of faeces were done for 97 children: 30 were uninfected, 17 were infected with T. trichiura, and 50 with T. trichiura and A. lumbricoides. Post-treatment samples were analyzed for 14 children initially infected with T. trichiura alone and for 21 uninfected children. Treatment resulted in 100% cure of STH infections. Comparisons of the microbiota at different taxonomic levels showed no statistically significant differences in composition between uninfected
children and those with T. trichiura infections. We observed a decreased proportional abundance of a few bacterial genera from the Clostridia class of Firmicutes and a reduced bacterial diversity among children with mixed infections compared to the other two groups, indicating a possible specific effect of A. lumbricoides infection. Anthelmintic treatment of children with T. trichiura did not alter faecal microbiota composition.
Discussion: Our data indicate that patent human infections with T. trichiura may have no effect on faecal microbiota but that A. lumbricoides colonisation might be associated with a disturbed microbiota. Our results also catalogue the microbiota of rural Ecuadorians and indicate differences with individuals from more urban industrialised societies
Withdrawal of infliximab therapy in ankylosing spondylitis in persistent clinical remission, results from the REMINEA study
Altres ajuts: This work is conducted under the umbrella of the Rheumatology Society of Catalonia and supported by Merck Research Laboratories.Background: Recent data suggest that anti-TNF doses can be reduced in ankylosing spondylitis (AS) patients. Some authors even propose withdrawing treatment in patients in clinical remission; however, at present there is no evidence to support this. Objective: To assess how long AS patients with persistent clinical remission remained free of flares after anti-TNF withdrawal and to evaluate the effects of treatment reintroduction. We also analyze the characteristics of patients who did not present clinical relapse. Methods: Multicenter, prospective, observational study of a cohort of patients with active AS who had received infliximab as a first anti-TNF treatment and who presented persistent remission (more than 6 months). We recorded at baseline and every 6-8 weeks over the 12-month period the age, gender, disease duration, peripheral arthritis or enthesitis, HLA-B27 status, BASDAI, CRP, ESR, BASFI, and three visual analogue scales, spine global pain, spinal night time pain, and patient's global assessment. Results: Thirty-six out of 107 patients (34%) presented persistent remission and were included in our study. After treatment withdrawal, 21 of these 36 patients (58%) presented clinical relapse during follow-up. Infliximab therapy was reintroduced and only 52% achieved clinical remission, as they had before the discontinuation of infliximab; in an additional 10%, reintroduction of infliximab was ineffective, obliging us to change the anti-TNF therapy. No clinical or biological factors were associated with the occurrence of relapse during the follow-up. Conclusions: Two thirds of patients in clinical remission presented clinical relapse shortly after infliximab withdrawal. Although the reintroduction of infliximab treatment was safe, half of the patients did not present the same clinical response that they had achieved prior to treatment withdrawal
Unravelling data for rapid evidence-based response to COVID-19: a summary of the unCoVer protocol
Introduction unCoVer - Unravelling data for rapid evidence-based response to COVID-19 - is a Horizon 2020-funded network of 29 partners from 18 countries capable of collecting and using real-world data (RWD) derived from the response and provision of care to patients with COVID-19 by health systems across Europe and elsewhere. unCoVer aims to exploit the full potential of this information to rapidly address clinical and epidemiological research questions arising from the evolving pandemic. Methods and analysis From the onset of the COVID-19 pandemic, partners are gathering RWD from electronic health records currently including information from over 22 000 hospitalised patients with COVID-19, and national surveillance and screening data, and registries with over 1 900 000 COVID-19 cases across Europe, with continuous updates. These heterogeneous datasets will be described, harmonised and integrated into a multi-user data repository operated through Opal-DataSHIELD, an interoperable open-source server application. Federated data analyses, without sharing or disclosing any individual-level data, will be performed with the objective to reveal patients' baseline characteristics, biomarkers, determinants of COVID-19 prognosis, safety and effectiveness of treatments, and potential strategies against COVID-19, as well as epidemiological patterns. These analyses will complement evidence from efficacy/safety clinical trials, where vulnerable, more complex/heterogeneous populations and those most at risk of severe COVID-19 are often excluded. Ethics and dissemination After strict ethical considerations, databases will be available through a federated data analysis platform that allows processing of available COVID-19 RWD without disclosing identification information to analysts and limiting output to data aggregates. Dissemination of unCoVer's activities will be related to the access and use of dissimilar RWD, as well as the results generated by the pooled analyses. Dissemination will include training and educational activities, scientific publications and conference communications.info:eu-repo/semantics/publishedVersio
Effects of chronic ascariasis and trichuriasis on cytokine production and gene expression in human blood: a cross-sectional study.
Background
Chronic soil-transmitted helminth (STH) infections are associated with effects on systemic immune responses that could be caused by alterations in immune homeostasis. To investigate this, we measured the impact in children of STH infections on cytokine responses and gene expression in unstimulated blood.
Methodology/Principal Findings
Sixty children were classified as having chronic, light, or no STH infections. Peripheral blood mononuclear cells were cultured in medium for 5 days to measure cytokine accumulation. RNA was isolated from peripheral blood and gene expression analysed using microarrays. Different infection groups were compared for the purpose of analysis: STH infection (combined chronic and light vs. uninfected groups) and chronic STH infection (chronic vs. combined light and uninfected groups). The chronic STH infection effect was associated with elevated production of GM-CSF (P = 0.007), IL-2 (P = 0.03), IL-5 (P = 0.01), and IL-10 (P = 0.01). Data reduction suggested that chronic infections were primarily associated with an immune phenotype characterized by elevated IL-5 and IL-10, typical of a modified Th2-like response. Chronic STH infections were associated with the up-regulation of genes associated with immune homeostasis (IDO, P = 0.03; CCL23, P = 0.008, HRK, P = 0.005), down-regulation of microRNA hsa-let-7d (P = 0.01) and differential regulation of several genes associated with granulocyte-mediated inflammation (IL-8, down-regulated, P = 0.0002; RNASE2, up-regulated, P = 0.009; RNASE3, up-regulated, p = 0.03).
Conclusions/Significance
Chronic STH infections were associated with a cytokine response indicative of a modified Th2 response. There was evidence that STH infections were associated with a pattern of gene expression suggestive of the induction of homeostatic mechanisms, the differential expression of several inflammatory genes and the down-regulation of microRNA has-let-7d. Effects on immune homeostasis and the development of a modified Th2 immune response during chronic STH infections could explain the systemic immunologic effects that have been associated with these infections such as impaired immune responses to vaccines and the suppression of inflammatory diseases
- …