19 research outputs found

    Plant diversity patterns in neotropical dry forests and their conservation implications

    Get PDF
    This is the author accepted manuscript. The final version is available from American Association for the Advancement of Science via the DOI in this record.Seasonally dry tropical forests are distributed across Latin America and the Caribbean and are highly threatened, with less than 10% of their original extent remaining in many countries. Using 835 inventories covering 4660 species of woody plants, we show marked floristic turnover among inventories and regions, which may be higher than in other neotropical biomes, such as savanna. Such high floristic turnover indicates that numerous conservation areas across many countries will be needed to protect the full diversity of tropical dry forests. Our results provide a scientific framework within which national decision-makers can contextualize the floristic significance of their dry forest at a regional and continental scale.This paper is the result of the Latin American and Caribbean Seasonally Dry Tropical Forest Floristic Network (DRYFLOR), which has been supported at the Royal Botanic Garden Edinburgh by a Leverhulme Trust International Network Grant (IN-074). This work was also supported by the U.K. Natural Environment Research Council grant NE/I028122/1; Colciencias Ph.D. scholarship 529; Synthesys Programme GBTAF-2824; the NSF (NSF 1118340 and 1118369); the Instituto Humboldt (IAvH)–Red colombiana de investigación y monitoreo en bosque seco; the Inter-American Institute for Global Change Research (IAI; Tropi-Dry, CRN2-021, funded by NSF GEO 0452325); Universidad Nacional de Rosario (UNR); and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). The data reported in this paper are available at www.dryflor.info. R.T.P. conceived the study. M.P., A.O.-F., K.B.-R., R.T.P., and J.W. designed the DRYFLOR database system. K.B.-R. and K.G.D. carried out most analyses. K.B.-R. R.T.P., and K.G.D. wrote the manuscript with substantial input from A.D.-S., R.L.-P., A.O.-F., D.P., C.Q., and R.R. All the authors contributed data, discussed further analyses, and commented on various versions of the manuscript. K.B.-R. thanks G. Galeano who introduced her to dry forest research. We thank J. L. Marcelo, I. Huamantupa, C. Reynel, S. Palacios, and A. Daza for help with fieldwork and data entry in Peru

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    The Chagas disease domestic transmission cycle in Guatemala: Parasite-vector switches and lack of mitochondrial co-diversification between Triatoma dimidiata and Trypanosoma cruzi subpopulations suggest non-vectorial parasite dispersal across the Motagua valley.

    No full text
    Parasites transmitted by insects must adapt to their vectors and reservoirs. Chagas disease, an American zoonosis caused by Trypanosoma cruzi, is transmitted by several species of triatomines. In Central America, Triatoma dimidiata is a widely dispersed vector found in sylvatic and domestic habitats, with distinct populations across the endemic region of Guatemala. Our aim was to test the strength of association between vector and parasite genetic divergence in domestic environments. Microsatellite (MS) loci were used to characterize parasites isolated from T. dimidiata (n=112) collected in domestic environments. Moderate genetic differentiation was observed between parasites north and south of the Motagua Valley, an ancient biogeographic barrier (FST 0.138, p=0.009). Slightly reduced genotypic diversity and increased heterozygosity in the north (Allelic richness (Ar)=1.00-6.05, FIS -0.03) compared to the south (Ar=1.47-6.30, FIS 0.022) suggest either a selective or demographic process during parasite dispersal. Based on parasite genotypes and geographic distribution, 15 vector specimens and their parasite isolates were selected for mitochondrial co-diversification analysis. Genetic variability and phylogenetic congruence were determined with mitochondrial DNA sequences (10 parasite maxicircle gene fragments and triatomine ND4+CYT b). A Mantel test as well as phylogenetic, network and principal coordinates analyses supported at least three T. dimidiata haplogroups separated by geographic distance across the Motagua Valley. Maxicircle sequences showed low T. cruzi genetic variability (π nucleotide diversity 0.00098) with no evidence of co-diversification with the vector, having multiple host switches across the valley. Sylvatic Didelphis marsupialis captured across the Motagua Valley were found to be infected with T. cruzi strains sharing MS genotypes with parasites isolated from domiciliated triatomines. The current parasite distribution in domestic environments can be explained by multiple parasite-host switches between vector populations and selection or bottleneck processes across the Motagua Valley, with a possible role for didelphids in domestic transmission
    corecore