10 research outputs found

    Adhesion of microcapsules

    Full text link
    The adhesion of microcapsules to an attractive contact potential is studied theoretically. The axisymmetric shape equations are solved numerically. Beyond a universal threshold strength of the potential, the contact radius increases like a square root of the strength. Scaling functions for the corresponding amplitudes are derived as a function of the elastic parameters.Comment: 4 pages, 4 figure

    Onsager model for a variable dielectric permittivity near an interface

    Full text link
    Using a generalisation of an Onsager type approach, we are able to predict a dielectric permittivity profile of an inhomogeneous dipolar fluid in the presence of a dielectric interface. The reaction and cavity fields are calculated semi-analytically using bispherical coordinates. An asymptotic expression for the local permittivity is derived as a function of distance from the interface.Comment: 20 pages, 4 figures, submitted to Molecular Physic

    Time-Dependent Density Functional Theory of Classical Fluids

    Get PDF
    We establish a rigorous time-dependent density functional theory of classical fluids for a wide class of microscopic dynamics. We obtain a stationary action principle for the density. We further introduce an exact practical scheme, to obtain hydrodynamical effects in density evolution, that is analogous to the Kohn-Sham theory of quantum systems. Finally, we show how the current theory recovers existing phenomenological theories in an adiabatic limit

    Elastic capsules in shear flow: Analytical solutions for constant and time-dependent shear rates

    Full text link
    We investigate the dynamics of microcapsules in linear shear flow within a reduced model with two degrees of freedom. In previous work for steady shear flow, the dynamic phases of this model, i.e. swinging, tumbling and intermittent behaviour, have been identified using numerical methods. In this paper, we integrate the equations of motion in the quasi-spherical limit analytically for time-constant and time-dependent shear flow using matched asymptotic expansions. Using this method, we find analytical expressions for the mean tumbling rate in general time-dependent shear flow. The capsule dynamics is studied in more detail when the inverse shear rate is harmonically modulated around a constant mean value for which a dynamic phase diagram is constructed. By a judicious choice of both modulation frequency and phase, tumbling motion can be induced even if the mean shear rate corresponds to the swinging regime. We derive expressions for the amplitude and width of the resonance peaks as a function of the modulation frequency.Comment: 15 pages, 12 figure

    Time-Dependent Density Functional Theory of Classical Fluids

    Get PDF
    We establish a rigorous time-dependent density functional theory of classical fluids for a wide class of microscopic dynamics. We obtain a stationary action principle for the density. We further introduce an exact practical scheme, to obtain hydrodynamical effects in density evolution, that is analogous to the Kohn-Sham theory of quantum systems. Finally, we show how the current theory recovers existing phenomenological theories in an adiabatic limit

    Phase separation of a multiple occupancy lattice gas

    Full text link
    A binary lattice gas model that allows for multiple occupancy of lattice sites, inspired by recent coarse-grained descriptions of solutions of interacting polymers, is investigated by combining the steepest descent approximation with an exploration of the multidimensional energy landscape, and by Gibbs ensemble Monte Carlo simulations. The one-component version of the model, involving on site and nearest neighbour interactions, is shown to exhibit microphase separation into two sub-lattices with different mean occupation numbers. The symmetric two-component version of the multiple occupancy lattice gas is shown to exhibit a demixing transition into two phases above a critical mean occupation number.Comment: submitted to Journal of Physics
    corecore