3,961 research outputs found
Interplay of frequency-synchronization with noise: current resonances, giant diffusion and diffusion-crests
We elucidate how the presence of noise may significantly interact with the
synchronization mechanism of systems exhibiting frequency-locking. The response
of these systems exhibits a rich variety of behaviors, such as resonances and
anti-resonances which can be controlled by the intensity of noise. The
transition between different locked regimes provokes the development of a
multiple enhancement of the effective diffusion. This diffusion behavior is
accompanied by a crest-like peak-splitting cascade when the distribution of the
lockings is self-similar, as it occurs in periodic systems that are able to
exhibit a Devil's staircase sequence of frequency-lockings.Comment: 7 pages, 6 figures, epl.cls. Accepted for publication in Europhysics
Letter
Exploiting lattice potentials for sorting chiral particles
Several ways are demonstrated of how periodic potentials can be exploited for
sorting molecules or other small objects which only differ by their chirality.
With the help of a static bias force, the two chiral partners can be made to
move along orthogonal directions. Time-periodic external forces even lead to
motion into exactly opposite directions.Comment: 4 pages, 4 figure
Semiclassical analysis of the lowest-order multipole deformations of simple metal clusters
We use a perturbative semiclassical trace formula to calculate the three
lowest-order multipole (quadrupole \eps_2, octupole \eps_3, and
hexadecapole \eps_4) deformations of simple metal clusters with atoms in their ground states. The self-consistent mean field of the
valence electrons is modeled by an axially deformed cavity and the oscillating
part of the total energy is calculated semiclassically using the shortest
periodic orbits. The average energy is obtained from a liquid-drop model
adjusted to the empirical bulk and surface properties of the sodium metal. We
obtain good qualitative agreement with the results of quantum-mechanical
calculations using Strutinsky's shell-correction method.Comment: LaTeX file (v2) 6 figures, to be published in Phys. Lett.
Rotating binary Bose-Einstein condensates and vortex clusters in quantum droplets
Quantum droplets may form out of a gaseous Bose-Einstein condensate,
stabilized by quantum fluctuations beyond mean field. We show that multiple
singly-quantized vortices may form in these droplets at moderate angular
momenta in two dimensions. Droplets carrying these precursors of an Abrikosov
lattice remain self-bound for certain timescales after switching off an initial
harmonic confinement. Furthermore, we examine how these vortex-carrying
droplets can be formed in a more pertubation-resistant setting, by starting
from a rotating binary Bose-Einstein condensate and inducing a metastable
persistent current via a non-monotonic trapping potential.Comment: 5 page, 4 figure
Facilitated movement of inertial Brownian motors driven by a load under an asymmetric potential
Based on recent work [L. Machura, M. Kostur, P. Talkner, J. Luczka, and P.
Hanggi, Phys. Rev. Lett. 98, 040601 (2007)], we extend the study of inertial
Brownian motors to the case of an asymmetric potential. It is found that some
transport phenomena appear in the presence of an asymmetric potential. Within
tailored parameter regimes, there exists two optimal values of the load at
which the mean velocity takes its maximum, which means that a load can
facilitate the transport in the two parameter regimes. In addition, the
phenomenon of multiple current reversals can be observed when the load is
increased.Comment: 7 pages, 3 figure
Nonequilibrium coupled Brownian phase oscillators
A model of globally coupled phase oscillators under equilibrium (driven by
Gaussian white noise) and nonequilibrium (driven by symmetric dichotomic
fluctuations) is studied. For the equilibrium system, the mean-field state
equation takes a simple form and the stability of its solution is examined in
the full space of order parameters. For the nonequilbrium system, various
asymptotic regimes are obtained in a closed analytical form. In a general case,
the corresponding master equations are solved numerically. Moreover, the
Monte-Carlo simulations of the coupled set of Langevin equations of motion is
performed. The phase diagram of the nonequilibrium system is presented. For the
long time limit, we have found four regimes. Three of them can be obtained from
the mean-field theory. One of them, the oscillating regime, cannot be predicted
by the mean-field method and has been detected in the Monte-Carlo numerical
experiments.Comment: 9 pages 8 figure
Resonant Activation Phenomenon for Non-Markovian Potential-Fluctuation Processes
We consider a generalization of the model by Doering and Gadoua to
non-Markovian potential-switching generated by arbitrary renewal processes. For
the Markovian switching process, we extend the original results by Doering and
Gadoua by giving a complete description of the absorption process. For all
non-Markovian processes having the first moment of the waiting time
distributions, we get qualitatively the same results as in the Markovian case.
However, for distributions without the first moment, the mean first passage
time curves do not exhibit the resonant activation minimum. We thus come to the
conjecture that the generic mechanism of the resonant activation fails for
fluctuating processes widely deviating from Markovian.Comment: RevTeX 4, 5 pages, 4 figures; considerably shortened version accepted
as a brief report to Phys. Rev.
ICT as learning media and research instrument: What eResearch can offer for those who research eLearning?
Students‘ interactions in digital learning environments are distributed over time and space, and many aspects of eLearning phenomenon cannot be investigated using traditional research approaches. At the same time, the possibility to collect digital data about students‘ online interactions and learning opens a range of new opportunities to use ICT as research tool and apply new research approaches. This symposium brings together some of the recent advancements in the area of ICT-enhanced research and aims to discuss future directions for methodological innovation in this area. The session will include four presentations that will explore different directions of ICT use for eLearning research
Dynamical typicality for initial states with a preset measurement statistics of several commuting observables
We consider all pure or mixed states of a quantum many-body system which
exhibit the same, arbitrary but fixed measurement outcome statistics for
several commuting observables. Taking those states as initial conditions, which
are then propagated by the pertinent Schr\"odinger or von Neumann equation up
to some later time point, and invoking a few additional, fairly weak and
realistic assumptions, we show that most of them still entail very similar
expectation values for any given observable. This so-called dynamical
typicality property thus corroborates the widespread observation that a few
macroscopic features are sufficient to ensure the reproducibility of
experimental measurements despite many unknown and uncontrollable microscopic
details of the system. We also discuss and exemplify the usefulness of our
general analytical result as a powerful numerical tool
- …