10 research outputs found

    Integrated Photonic Sensing

    Full text link
    Loss is a critical roadblock to achieving photonic quantum-enhanced technologies. We explore a modular platform for implementing integrated photonics experiments and consider the effects of loss at different stages of these experiments, including state preparation, manipulation and measurement. We frame our discussion mainly in the context of quantum sensing and focus particularly on the use of loss-tolerant Holland-Burnett states for optical phase estimation. In particular, we discuss spontaneous four-wave mixing in standard birefringent fibre as a source of pure, heralded single photons and present methods of optimising such sources. We also outline a route to programmable circuits which allow the control of photonic interactions even in the presence of fabrication imperfections and describe a ratiometric characterisation method for beam splitters which allows the characterisation of complex circuits without the need for full process tomography. Finally, we present a framework for performing state tomography on heralded states using lossy measurement devices. This is motivated by a calculation of the effects of fabrication imperfections on precision measurement using Holland-Burnett states.Comment: 19 pages, 7 figure

    Quantum memory in an optical lattice

    Get PDF
    Arrays of atoms trapped in optical lattices are appealing as storage media for photons, since motional dephasing of the atoms is eliminated. The regular lattice is also associated with band structure in the dispersion experienced by incident photons. Here we study the influence of this band structure on the efficiency of quantum memories based on electromagnetically induced transparency (EIT) and on Raman absorption. We observe a number of interesting effects, such as both reduced and superluminal group velocities, enhanced atom-photon coupling, and anomalous transmission. These effects are ultimately deleterious to the memory efficiency, but they are easily avoided by tuning the optical fields away from the band edges

    Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond

    No full text
    The nature of the transition between the familiar classical, macroscopic world and the quantum, microscopic one continues to be poorly understood. Expanding the regime of observable quantum behaviour to large-scale objects is therefore an exciting open problem. In macroscopic systems of interacting particles, rapid thermalization usually destroys any quantum coherence before it can be measured or used at room temperature. Here, we demonstrate quantum processing in the vibrational modes of a macroscopic diamond sample under ambient conditions. Using ultrafast Raman scattering, we create an extended, highly non-classical state in the optical phonon modes of bulk diamond. Direct measurement of phonon coherence and correlations establishes the non-classical nature of the crystal dynamics. These results show that optical phonons in diamond provide a unique opportunity for the study of large-scale quantum behaviour, and highlight the potential for diamond as a micro-photonic quantum processor capable of operating at terahertz rates.Peer reviewed: YesNRC publication: Ye

    Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond Nature Photon

    No full text
    The nature of the transition between the familiar classical, macroscopic world and the quantum, microscopic one continues to be poorly understood. Expanding the regime of observable quantum behaviour to large-scale objects is therefore an exciting open problem Standard quantum mechanics provides no explanation for the usual disappearance of quantum superpositions on macroscopic scales. New physics may be involved 3,4 , although a broader consensus holds that thermalization with a classical environment necessarily destroys coherence 5 . Nevertheless, much recent work has investigated the quantum-classical transition in large-scale systems. For example, recent studies have suggested that quantum interference may play a functional role in living organisms where ultrafast processes, such as electron transport, benefit from quantum enhancements on timescales much shorter than the decoherence time Research into generating large-scale quantum states is also motivated by their potential to revolutionize computing and communications through quantum-enhanced technologies Optical phonons are attractive from the perspective of quantum information processing, because they are non-propagating, persistent, coherent excitations that couple strongly to optical fields. In fact, they have all the properties necessary for a quantum memory. Quantum memories, which store propagating photons as stationary material excitations until they are needed, are an essential component for scalable photonic quantum computing The Raman interaction in diamond is strong, and, because of the extremely large bandgap, has near-uniform strength at all optical wavelengths. To interpret our experiments, it is convenient to adopt a simplified picture of the diamond crystal as a three-level L system comprising the crystal ground state |0l, a storage state with an excited optical phonon |1l and a far off-resonant intermediate state |Excitonl (strictly a manifold of exciton states in the conduction band; se

    Multi-pulse addressing of a Raman quantum memory

    No full text
    Quantum memories are vital to the scalability of photonic quantum information processing (PQIP), since the storage of photons enables repeat-until-success strategies. On the other hand the key element of all PQIP architectures is the beam splitter, which allows to coherently couple optical modes. Here we show how to combine these crucial functionalities by addressing a Raman quantum memory with multiple control pulses. The result is a coherent optical storage device with an extremely large time-bandwidth product, that functions as an array of dynamically configurable beam splitters, and that can be read out with arbitrarily high efficiency. Networks of such devices would allow fully scalable PQIP, with applications in quantum computation, long-distance quantum communications and quantum metrology

    Multipulse Addressing of a Raman Quantum Memory: Configurable Beam Splitting and Efficient Readout

    No full text
    Quantum memories are vital to the scalability of photonic quantum information processing (PQIP), since the storage of photons enables repeat-until-success strategies. On the other hand the key element of all PQIP architectures is the beam splitter, which allows to coherently couple optical modes. Here we show how to combine these crucial functionalities by addressing a Raman quantum memory with multiple control pulses. The result is a coherent optical storage device with an extremely large time-bandwidth product, that functions as an array of dynamically configurable beam splitters, and that can be read out with arbitrarily high efficiency. Networks of such devices would allow fully scalable PQIP, with applications in quantum computation, long-distance quantum communications and quantum metrology

    High-Fidelity Polarization Storage in a Gigahertz Bandwidth Quantum Memory

    No full text
    We demonstrate a dual-rail optical Raman memory inside a polarization interferometer; this enables us to store polarization-encoded information at GHz bandwidths in a room-temperature atomic ensemble. By performing full process tomography on the system we measure up to 97\pm1% process fidelity for the storage and retrieval process. At longer storage times, the process fidelity remains high, despite a loss of efficiency. The fidelity is 86\pm4% for 1.5 \mu s storage time, which is 5,000 times the pulse duration. Hence high fidelity is combined with a large time-bandwidth product. This high performance, with an experimentally simple setup, demonstrates the suitability of the Raman memory for integration into large-scale quantum networks

    High-Fidelity Polarization Storage in a Gigahertz Bandwidth Quantum Memory

    Get PDF
    We demonstrate a dual-rail optical Raman memory inside a polarization interferometer; this enables us to store polarization-encoded information at GHz bandwidths in a room-temperature atomic ensemble. By performing full process tomography on the system we measure up to 97\pm1% process fidelity for the storage and retrieval process. At longer storage times, the process fidelity remains high, despite a loss of efficiency. The fidelity is 86\pm4% for 1.5 \mu s storage time, which is 5,000 times the pulse duration. Hence high fidelity is combined with a large time-bandwidth product. This high performance, with an experimentally simple setup, demonstrates the suitability of the Raman memory for integration into large-scale quantum networks

    Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond

    No full text
    The nature of the transition between the familiar classical, macroscopic world and the quantum, microscopic one continues to be poorly understood. Expanding the regime of observable quantum behaviour to large-scale objects is therefore an exciting open problem. In macroscopic systems of interacting particles, rapid thermalization usually destroys any quantum coherence before it can be measured or used at room temperature. Here, we demonstrate quantum processing in the vibrational modes of a macroscopic diamond sample under ambient conditions. Using ultrafast Raman scattering, we create an extended, highly non-classical state in the optical phonon modes of bulk diamond. Direct measurement of phonon coherence and correlations establishes the non-classical nature of the crystal dynamics. These results show that optical phonons in diamond provide a unique opportunity for the study of large-scale quantum behaviour, and highlight the potential for diamond as a micro-photonic quantum processor capable of operating at terahertz rates
    corecore