1,771 research outputs found

    The actions of Pasteurella multocida toxin on neuronal cells

    Get PDF
    Pasteurella multocida toxin (PMT) activates the G-proteins Gα, Gα, Gα Gα and Gα by deamidation of specific glutamine residues. A number of these alpha subunits have signalling roles in neurones. Hence we studied the action of this toxin on rat superior cervical ganglion (SCG) neurones and NG108-15 neuronal cells. Both Gα and Gα could be identified in SCGs with immunocytochemistry. PMT had no direct action on Kv7 or Cav2 channels in SCGs. However PMT treatment enhanced muscarinic receptor mediated inhibition of M-current (Kv7.2 + 7. 3) as measured by a 19-fold leftward shift in the oxotremorine-M concentration-inhibition curve. Agonists of other receptors, such as bradykinin or angiotensin, that inhibit M-current did not produce this effect. However the amount of PIP hydrolysis could be enhanced by PMT for all three agonists. In a transduction system in SCGs that is unlikely to be affected by PMT, Go mediated inhibition of calcium current, PMT was ineffective whereas the response was blocked by pertussis toxin as expected. M1 muscarinic receptor evoked calcium mobilisation in transformed NG108-15 cells was enhanced by PMT. The calcium rises evoked by uridine triphosphate acting on endogenous P2Y receptors in NG108-15 cells were enhanced by PMT. The time and concentration dependence of the PMT effect was different for the resting calcium compared to the calcium rise produced by activation of P2Y receptors. PMT's action on these neuronal cells would suggest that if it got into the brain, symptoms of a hyperexcitable nature would be seen, such as seizures. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved

    Kv7/M-type potassium channels in rat skin keratinocytes.

    Get PDF
    Skin keratinocytes fulfil important signalling and protective functions. Immunocytochemical experiments revealed the unexpected presence of immunoreactivity for the M-type potassium channel subunit Kv7.2 in the keratinocyte layer of intact rat paw skin and in keratinocytes isolated from the skin of 1-day-old rats and cultured in vitro for 3-10 days. Application of the M-channel enhancer retigabine (3-10 μM) to isolated cultured rat keratinocytes: (a) increased outward membrane currents recorded under voltage clamp, (b) produced ~3 mV hyperpolarization at rest, (c) enhanced ~3-fold the release of ATP induced by the TRPV3 agonist carvacrol (1 mM) and (d) increased the amplitude of the carvacrol-induced intracellular Ca(2+) transient measured with Fura-2. The effect of retigabine on ATP release was prevented by the M-channel blocking agent XE991. We conclude that rat skin keratinocytes possess M-channels that, when activated, can modify their physiological properties, with potential significance for their sensory and other biological functions

    Rydel-Seiffer fork revisited: Beyond a simple case of black and white

    Get PDF

    A novel homozygous variant extending the peripheral myelin protein 22 by 9 AMino acids causes early-onset Charcot-Marie-Tooth disease with predominant severe sensory ataxia

    Get PDF
    Peripheral myelin protein 22 (PMP22) related neuropathies account for over 50% of inherited peripheral neuropathies. A gene copy variation results in CMT1A (duplication) and hereditary neuropathy with liability to pressure palsies (HNPP; single deletion). Point mutations comprise both phenotypes. The underlying pathological mechanisms are incompletely understood and biallelic mutations of PMP22 are very rare. We describe a 9‐year‐old girl who presented before the age of 1 year with severe locomotor delay. She now requires support for standing and walking in view of her severe sensory ataxia. Strikingly, her muscle power and bulk are close to normal in all segments. Nerve conduction studies showed sensory‐motor velocities below 5 m/s. Genetic analysis revealed a homozygous sequence change in the PMP22 gene causing the loss of termination codon (c.483A > G; p.[*161Trpext*10]), extending the protein by 9 amino acids. Both heterozygous parents have neurophysiological abnormalities consistent with HNPP, consistent with this being a loss‐of‐function mutation. PMP22‐deficient human models are rare but important to decipher the physiological function of the PMP22 protein in vivo. The predominance of large fiber sensory involvement in this and other rare similar cases suggests a pivotal role played by PMP22 in the embryogenesis of dorsal root ganglia in humans

    Randomized controlled trial of a good practice approach to treatment of childhood obesity in Malaysia: Malaysian childhood obesity treatment trial (MASCOT)

    Get PDF
    Context. Few randomized controlled trials (RCTs) of interventions for the treatment of childhood obesity have taken place outside the Western world. Aim. To test whether a good practice intervention for the treatment of childhood obesity would have a greater impact on weight status and other outcomes than a control condition in Kuala Lumpur, Malaysia. Methods. Assessor-blinded RCT of a treatment intervention in 107 obese 7- to 11-year olds. The intervention was relatively low intensity (8 hours contact over 26 weeks, group based), aiming to change child sedentary behavior, physical activity, and diet using behavior change counselling. Outcomes were measured at baseline and six months after the start of the intervention. Primary outcome was BMI z-score, other outcomes were weight change, health-related quality of life (Peds QL), objectively measured physical activity and sedentary behavior (Actigraph accelerometry over 5 days). Results. The intervention had no significant effect on BMI z score relative to control. Weight gain was reduced significantly in the intervention group compared to the control group (+1.5 kg vs. +3.5 kg, respectively, t-test p < 0.01). Changes in health-related quality of life and objectively measured physical activity and sedentary behavior favored the intervention group. Conclusions. Treatment was associated with reduced rate of weight gain, and improvements in physical activity and quality of life. More substantial benefits may require longer term and more intensive interventions which aim for more substantive lifestyle changes

    Pilot phenotype and natural history study of hereditary neuropathies caused by mutations in the HSPB1 gene

    Get PDF
    Mutations in HSPB1 are one of the commonest causes of distal Hereditary Motor Neuropathy (dHMN). Transgenic mouse models of the disease have identified HDAC6 inhibitors as promising treatments for the condition paving the way for human trials. A detailed phenotype and natural history study of HSPB1 neuropathy is therefore required in order to inform the duration and outcome measures of any future trials. Clinical and neurophysiological data and lower limb muscle MRI were collected both prospectively and retrospectively from patients with mutations in HSPB1. The natural history was assessed by recording the weighted Charcot-Marie-Tooth Examination Score (CMTES) at annual intervals in a subset of patients. 20 patients from 14 families were recruited into the study. The average age of onset was in the 4th decade. Patients presented with a length dependent neuropathy but with early ankle plantar flexion weakness. Neurophysiology confirmed a motor neuropathy but also showed sensory nerve involvement in most patients. Cross sectional muscle MRI revealed soleus and medial gastrocnemius fat infiltration as an early signature of mutant HSPB1 disease. In this study neither semi quantitative muscle MRI, the CMTES nor neurophysiology were able to detect disease progression in HSPB1 neuropathy over 1 or 2 years. Further studies are therefore required to identify a suitable biomarker before clinical trials in HSPB1 neuropathy can be undertaken

    MRI biomarker assessment of neuromuscular disease progression: a prospective observational cohort study

    Get PDF
    BACKGROUND: A substantial impediment to progress in trials of new therapies in neuromuscular disorders is the absence of responsive outcome measures that correlate with patient functional deficits and are sensitive to early disease processes. Irrespective of the primary molecular defect, neuromuscular disorder pathological processes include disturbance of intramuscular water distribution followed by intramuscular fat accumulation, both quantifiable by MRI. In pathologically distinct neuromuscular disorders, we aimed to determine the comparative responsiveness of MRI outcome measures over 1 year, the validity of MRI outcome measures by cross-sectional correlation against functionally relevant clinical measures, and the sensitivity of specific MRI indices to early muscle water changes before intramuscular fat accumulation beyond the healthy control range. METHODS: We did a prospective observational cohort study of patients with either Charcot-Marie-Tooth disease 1A or inclusion body myositis who were attending the inherited neuropathy or muscle clinics at the Medical Research Council (MRC) Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, UK. Genetic confirmation of the chromosome 17p11·2 duplication was required for Charcot-Marie-Tooth disease 1A, and classification as pathologically or clinically definite by MRC criteria was required for inclusion body myositis. Exclusion criteria were concomitant diseases and safety-related MRI contraindications. Healthy age-matched and sex-matched controls were also recruited. Assessments were done at baseline and 1 year. The MRI outcomes-fat fraction, transverse relaxation time (T2), and magnetisation transfer ratio (MTR)-were analysed during the 12-month follow-up, by measuring correlation with functionally relevant clinical measures, and for T2 and MTR, sensitivity in muscles with fat fraction less than the 95th percentile of the control group. FINDINGS: Between Jan 19, 2010, and July 7, 2011, we recruited 20 patients with Charcot-Marie-Tooth disease 1A, 20 patients with inclusion body myositis, and 29 healthy controls (allocated to one or both of the 20-participant matched-control subgroups). Whole muscle fat fraction increased significantly during the 12-month follow-up at calf level (mean absolute change 1·2%, 95% CI 0·5-1·9, p=0·002) but not thigh level (0·2%, -0·2 to 0·6, p=0·38) in patients with Charcot-Marie-Tooth disease 1A, and at calf level (2·6%, 1·3-4·0, p=0·002) and thigh level (3·3%, 1·8-4·9, p=0·0007) in patients with inclusion body myositis. Fat fraction correlated with the lower limb components of the inclusion body myositis functional rating score (ρ=-0·64, p=0·002) and the Charcot-Marie-Tooth examination score (ρ=0·63, p=0·003). Longitudinal T2 and MTR changed consistently with fat fraction but more variably. In muscles with a fat fraction lower than the control group 95th percentile, T2 was increased in patients compared with controls (regression coefficients: inclusion body myositis thigh 4·0 ms [SE 0·5], calf 3·5 ms [0·6]; Charcot-Marie-Tooth 1A thigh 1·0 ms [0·3], calf 2·0 ms [0·3]) and MTR reduced compared with controls (inclusion body myositis thigh -1·5 percentage units [pu; 0·2], calf -1·1 pu [0·2]; Charcot-Marie-Tooth 1A thigh -0·3 pu [0·1], calf -0·7 pu [0·1]). INTERPRETATION: MRI outcome measures can monitor intramuscular fat accumulation with high responsiveness, show validity by correlation with conventional functional measures, and detect muscle water changes preceding marked intramuscular fat accumulation. Confirmation of our results in further cohorts with these and other muscle-wasting disorders would suggest that MRI biomarkers might prove valuable in experimental trials. FUNDING: Medical Research Council UK

    Muscle MRI reveals distinct abnormalities in genetically proven non-dystrophic myotonias.

    Get PDF
    We assessed the presence, frequency and pattern of MRI abnormalities in non-dystrophic myotonia patients. We reviewed T1-weighted and STIR (short-tau-inversion-recovery) 3T MRI sequences of lower limb muscles at thigh and calf level in 21 patients with genetically confirmed non-dystrophic myotonia: 11 with CLCN1 mutations and 10 with SCN4A mutations, and 19 healthy volunteers. The MRI examinations of all patients showed hyperintensity within muscles on either T1-weighted or STIR images. Mild extensive or marked T1-weighted changes were noted in 10/21 patients and no volunteers. Muscles in the thigh were equally likely to be affected but in the calf there was sparing of tibialis posterior. Oedema was common in calf musculature especially in the medial gastrocnemius with STIR hyperintensity observed in 18/21 patients. In 10/11 CLCN1 patients this included a previously unreported "central stripe", also present in 3/10 SCN4A patients but no volunteers. Degree of fatty infiltration correlated with age (rho=0.46, p<0.05). Muscle MRI is frequently abnormal in non-dystrophic myotonia providing evidence of fatty infiltration and/or oedema. The pattern is distinct from other myotonic disorders; in particular the "central stripe" has not been reported in other conditions. Correlations with clinical parameters suggest a potential role for MRI as a biomarker

    Stability and sensitivity of water T2 obtained with IDEAL-CPMG in healthy and fat-infiltrated skeletal muscle

    Get PDF
    Quantifying muscle water T2 (T2 -water) independently of intramuscular fat content is essential in establishing T2 -water as an outcome measure for imminent new therapy trials in neuromuscular diseases. IDEAL-CPMG combines chemical shift fat-water separation with T2 relaxometry to obtain such a measure. Here we evaluate the reproducibility and B1 sensitivity of IDEAL-CPMG T2 -water and fat fraction (f.f.) values in healthy subjects, and demonstrate the potential of the method to quantify T2 -water variation in diseased muscle displaying varying degrees of fatty infiltration. The calf muscles of 11 healthy individuals (40.5 ± 10.2 years) were scanned twice at 3 T with an inter-scan interval of 4 weeks using IDEAL-CPMG, and 12 patients with hypokalemic periodic paralysis (HypoPP) (42.3 ± 11.5 years) were also imaged. An exponential was fitted to the signal decay of the separated water and fat components to determine T2 -water and the fat signal amplitude muscle regions manually segmented. Overall mean calf-level muscle T2 -water in healthy subjects was 31.2 ± 2.0 ms, without significant inter-muscle differences (p = 0.37). Inter-subject and inter-scan coefficients of variation were 5.7% and 3.2% respectively for T2 -water and 41.1% and 15.4% for f.f. Bland-Altman mean bias and ±95% coefficients of repeatability were for T2 -water (0.15, -2.65, 2.95) ms and f.f. (-0.02, -1.99, 2.03)%. There was no relationship between T2 -water (ρ = 0.16, p = 0.07) or f.f. (ρ = 0.03, p = 0.7761) and B1 error or any correlation between T2 -water and f.f. in the healthy subjects (ρ = 0.07, p = 0.40). In HypoPP there was a measurable relationship between T2 -water and f.f. (ρ = 0.59, p < 0.001). IDEAL-CPMG provides a feasible way to quantify T2 -water in muscle that is reproducible and sensitive to meaningful physiological changes without post hoc modeling of the fat contribution. In patients, IDEAL-CPMG measured elevations in T2 -water and f.f. while showing a weak relationship between these parameters, thus showing promise as a practical means of quantifying muscle water in patient populations
    corecore