21 research outputs found
Little qualitative RNA misexpression in sterile male F(1) hybrids of Drosophila pseudoobscura and D. persimilis
BACKGROUND: Although the genetics of hybrid sterility has been the subject of evolutionary studies for over sixty years, no one has shown the reason(s) why alleles that operate normally within species fail to function in another genetic background. Several lines of evidence suggest that failures in normal gene transcription contribute to hybrid dysfunctions, but genome-wide studies of gene expression in pure-species and hybrids have not been undertaken. Here, we study genome-wide patterns of expression in Drosophila pseudoobscura, D. persimilis, and their sterile F(1) hybrid males using differential display. RESULTS: Over five thousand amplifications were analyzed, and 3312 were present in amplifications from both of the pure species. Of these, 28 (0.5%) were not present in amplifications from adult F(1) hybrid males. Using product-specific primers, we were able to confirm one of nine of the transcripts putatively misexpressed in hybrids. This transcript was shown to be male-specific, but without detectable homology to D. melanogaster sequence. CONCLUSION: We tentatively conclude that hybrid sterility can evolve without widespread, qualitative misexpression of transcripts in species hybrids. We suggest that, if more misexpression exists in sterile hybrids, it is likely to be quantitative, tissue-specific, and/ or limited to earlier developmental stages. Although several caveats apply, this study was a first attempt to determine the mechanistic basis of hybrid sterility, and one potential candidate gene has been identified for further study
Biocatalytic and antimetastatic studies of the marine cembranoids sarcophine and 2-epi-16-deoxysarcophine
The soft coral Sarcophyton glaucum is a rich resource of several bioactive cembranoids. Sarcophytol A (1) and sarcophine (2) are cembranoid diterpenes reported from this soft coral and extensively investigated for their cancer chemopreventive properties. This study aimed at investigating the antimetastatic potential of the major cembranoids, sarcophine (2) and 2-epi-16-deoxysarcophine (3), from the Red Sea soft coral S. glaucum. Biocatalytic transformation of 3 using Rhizopus stolonifer ATCC 6227a and Absidia spinosa ATCC 6648 afforded four new metabolites, 5-7 and 9, along with the known 9α-hydroxysarcophine (8). Sarcophine, 2-epi-16-deoxysarcophine, and metabolites 5-9 revealed significant antimetastatic activity against the highly metastatic mouse melanoma cell line (B16B15b). Cembranoids demonstrate a great potential for further development as antimetastatic agents. © 2006 American Chemical Society and American Society of Pharmacognosy
The genetics of reproductive isolation and the potential for gene exchange between Drosophila Pseudoobscura and D. Persimilis via backcross hybrid males
Hybrid male sterility, hybrid inviability, sexual isolation, and a hybrid male courtship dysfunction reproductively isolate Drosophila pseudoobscura and D. persimilis. Previous studies of the genetic bases of these isolating mechanisms have yielded only limited information about how much and what areas of the genome are susceptible to interspecies introgression. We have examined the genetic basis of these barriers to gene exchange in several thousand backcross hybrid male progeny of these species using 14 codominant molecular genetic markers spanning the five chromosomes of these species, focusing particularly on the autosomes. Hybrid male sterility, hybrid inviability, and the hybrid male courtship dysfunction were all associated with X-autosome interactions involving primarily the inverted regions on the left arm of the X-chromosome and the center of the second chromosome. Sexual isolation from D. pseudoobscura females was primarily associated with the left arm of the X-chromosome, although both the right arm and the center of the second chromosome also contributed to it. Sexual isolation from D. persimilis females was primarily associated with the second chromosome. The absence of isolating mechanisms being associated with many autosomal regions, including some large inverted regions that separate the strains, suggests that these phenotypes may not be caused by genes spread throughout the genome. We suggest that gene flow between these species via hybrid males may be possible at loci spread across much of the autosomes
Heparanase degrades syndecan-1 and perlecan heparan sulfate: Functional implications for tumor cell invasion
Heparanase (HPSE-1) is involved in the degradation of both cell-surface and extracellular matrix (ECM) heparan sulfate (HS) in normal and neoplastic tissues. Degradation of heparan sulfate proteoglycans (HSPG) in mammalian cells is dependent upon the enzymatic activity of HPSE-1, an endo-β -D-glucuronidase, which cleaves HS using a specific endoglycosidic hydrolysis rather than an eliminase type of action. Elevated HPSE-1 levels are associated with metastatic cancers, directly implicating HPSE-1 in tumor progression. The mechanism of HPSE-1 action to promote tumor progression may involve multiple substrates because HS is present on both cell-surface and ECM proteoglycans. However, the specific targets of HPSE-1 action are not known. Of particular interest is the relationship between HPSE-1 and HSPG, known for their involvement in tumor progression. Syndecan-1, an HSPG, is ubiquitously expressed at the cell surface, and its role in cancer progression may depend upon its degradation. Conversely, another HSPG, perlecan, is an important component of basement membranes and ECM, which can promote invasive behavior. Down-regulation of perlecan expression suppresses the invasive behavior of neoplastic cells in vitro and inhibits tumor growth and angiogenesis in vivo. In this work we demonstrate the following. 1) HPSE-1 cleaves HS present on the cell surface of metastatic melanoma cells. 2) HPSE-1 specifically degrades HS chains of purified syndecan-1 or perlecan HS. 3) Syndecan-1 does not directly inhibit HPSE-1 enzymatic activity. 4) The presence of exogenous syndecan-1 inhibits HPSE-1-mediated invasive behavior of melanoma cells by in vitro chemoinvasion assays. 5) Inhibition of HPSE-1-induced invasion requires syndecan-1 HS chains. These results demonstrate that cell-surface syndecan-1 and ECM perlecan are degradative targets of HPSE-1, and syndecan-1 regulates HPSE-1 biological activity. This suggest that expression of syndecan-1 on the melanoma cell surface and its degradation by HPSE-1 are important determinants in the control of tumor cell invasion and metastasis
Hyaluronan Synthase Elevation in Metastatic Prostate Carcinoma Cells Correlates with Hyaluronan Surface Retention, a Prerequisite for Rapid Adhesion to Bone Marrow Endothelial Cells
Bone marrow is the primary site of metastasis in patients with advanced stage prostate cancer. Prostate carcinoma cells metastasizing to bone must initially adhere to endothelial cells in the bone marrow sinusoids. In this report, we have modeled that interaction in vitro using two bone marrow endothelial cell (BMEC) lines and four prostate adenocarcinoma cell lines to investigate the adhesion mechanism. Highly metastatic PC3 and PC3M-LN4 cells were found to adhere rapidly and specifically (70-90%) to BMEC-1 and trHBMEC bone marrow endothelial cells, but not to human umbilical vein endothelial cells (15-25%). Specific adhesion to BMEC-1 and trHBMEC was dependent upon the presence of a hyaluronan (HA) pericellular matrix assembled on the prostate carcinoma cells. DU145 and LNCaP cells were only weakly adherent and retained no cell surface HA. Maximal BMEC adhesion and RA encapsulation were associated with high levels of HA synthesis by the prostate carcinoma cells. Up-regulation of HA synthase isoforms Has2 and Has3 relative to levels expressed by normal prostate corresponded to elevated HA synthesis and avid BMEC adhesion. These results support a model in which tumor cells with up-regulated HA synthase expression assemble a cell surface hyaluronan matrix that promotes adhesion to bone marrow endothelial cells. This interaction could contribute to preferential bone metastasis by prostate carcinoma cells
Recombination and the divergence of hybridizing species
The interplay between hybridization and recombination can have a dramatic effect on the likelihood of speciation or persistence of incompletely isolated species. Many models have suggested recombination can oppose speciation, and several recent empirical investigations suggest that reductions in recombination between various components of reproductive isolation and/or adaptation can allow species to persist in the presence of gene flow. In this article, we discuss these ideas in relation to speciation models, phylogenetic analyses, and species concepts. In particular, we revisit genetic architectures and population mechanisms that create genetic correlations and facilitate divergence in the face of gene flow. Linkage among genes contributing to adaptation or reproductive isolation due to chromosomal rearrangements as well as pleiotropy or proximity of loci can greatly increase the odds of species divergence or persistence. Finally, we recommend recombination to be a focus of inquiry when studying the origins of biological diversity