11 research outputs found

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Lymphoproliferative disorder during temozolomide therapy; a representative case of a formidable complication and management challenges

    No full text
    Abstract Background Lymphoproliferative disorder represents a heterogeneous clinicopathological spectrum characterized by uncontrolled proliferation of lymphocytes. Immunodeficiency is a major trigger of its development. While induction of immunodeficiency is a well-known adverse effect of temozolomide therapy, development of lymphoproliferative disorder following temozolomide therapy has not previously been described. Case presentation A patient with brainstem glioma developed constitutional symptoms, pancytopenia, splenomegaly and generalized lymphadenopathy during the 2nd cycle of maintenance therapy following induction therapy with temozolomide. Epstein-Barr virus-infected lymphocytes were observed histopathologically and “other iatrogenic immunodeficiency-associated lymphoproliferative disorder” (OIIA-LPD) was diagnosed. Although discontinuation of temozolomide led to rapid remission, relapse was observed 4 months later. CHOP chemotherapy was induced, resulting in secondary remission. Vigilant follow-up for another 14 months showed radiologically stable brainstem glioma and no further recurrence of OIIA-LPD. Conclusions This is the first report documenting OIIA-LPD during temozolomide administration. Timely diagnosis of the disease and discontinuation of the causative agent were considered to be the management of choice. Close monitoring for relapse should be continued. Finding a balance between glioma management and controlling the remission of OIIA-LPD remains to be clarified

    Identification of BST2 as a conjunctival epithelial stem/progenitor cell marker

    No full text
    Summary: The conjunctival epithelium consists of conjunctival epithelial cells and goblet cells derived from conjunctival epithelial stem/progenitor cells. However, the source of these cells is not well known because no specific markers for conjunctival epithelial stem/progenitor cells have been discovered. Therefore, to identify conjunctival epithelial stem/progenitor cell markers, we performed single-cell RNA sequencing of a conjunctival epithelial cell population derived from human-induced pluripotent stem cells (hiPSCs). The following conjunctival epithelial markers were identified: BST2, SLC2A3, AGR2, TMEM54, OLR1, and TRIM29. Notably, BST2 was strongly positive in the basal conjunctival epithelium, which is thought to be rich in stem/progenitor cells. Moreover, BST2 was able to sort conjunctival epithelial stem/progenitor cells from hiPSC-derived ocular surface epithelial cell populations. BST2-positive cells were highly proliferative and capable of successfully generating conjunctival epithelial sheets containing goblet cells. In conclusion, BST2 has been identified as a specific marker of conjunctival epithelial stem/progenitor cells
    corecore