16 research outputs found

    Cardiovascular disease in type 2 diabetes mellitus and chronic kidney disease:imaging modalities and pathogenetic mechanisms

    Get PDF
    Patients with cardiovascular diseases and risk factors are regarded a high risk group as a whole. However, the underlying mechanisms between patients might differ significantly. By investigating these processes on a cellular and systemic level, treatment options can be optimized and personalized. In this thesis we demonstrated that patients with type 2 diabetes mellitus and chronic kidney disease are at an increased risk for developing cardiovascular diseases, due to the process of accelerated vascular ageing in terms of arterial inflammation and calcification. In patients with type 2 diabetes mellitus, an increased amount of visceral adipose tissue is related to a rise in arterial inflammation. Additional presence of albuminuria in these patients is an indication for subclinical arterial disease with increased arterial micro-calcification and arterial stiffness. In patients with chronic kidney disease, adipose tissue is characterized by an increased inflammatory state, which promotes vascular disease. We found that metabolic changes, systemic and local inflammation and other biological factors, such as angiogenic factors, result in vascular changes, affecting the development of cardiovascular diseases. Imaging techniques and vascular measurements provide insights into the underlying processes, and are useful for detection and evaluation of de progression of vascular disease. Also lab measurements investigating insulin resistance, cholesterol, kidney function, and albuminuria are important features for risk stratification. By demonstrating that these markers are related to vascular changes, this thesis contributes to personalized medicine and, therefore, in prevention for the development and progression of cardiovascular diseases

    [18F]-sodium fluoride autoradiography imaging of nephrocalcinosis in donor kidneys and explanted kidney allografts

    Get PDF
    Nephrocalcinosis is present in up to 43% of kidney allograft biopsies at one-year after transplantation and is associated with inferior graft function and poor graft survival. We studied [18F]-sodium fluoride ([18F]-NaF) imaging of microcalcifications in donor kidneys (n = 7) and explanted kidney allografts (n = 13). Three µm paraffin-embedded serial sections were used for histological evaluation of calcification (Alizarin Red; Von Kossa staining) and ex-vivo [18F]-NaF autoradiography. The images were fused to evaluate if microcalcification areas corresponded with [18F]-NaF uptake areas. Based on histological analyses, tubulointerstitial and glomerular microcalcifications were present in 19/20 and 7/20 samples, respectively. Using autoradiography, [18F]-NaF uptake was found in 19/20 samples, with significantly more tracer activity in kidney allograft compared to deceased donor kidney samples (p = 0.019). Alizarin Red staining of active microcalcifications demonstrated good correlation (Spearman's rho of 0.81, p < 0.001) and Von Kossa staining of consolidated calcifications demonstrated significant but weak correlation (0.62, p = 0.003) with [18F]-NaF activity. This correlation between ex-vivo [18F]-NaF uptake and histology-proven microcalcifications, is the first step towards an imaging method to identify microcalcifications in active nephrocalcinosis. This may lead to better understanding of the etiology of microcalcifications and its impact on kidney transplant function

    Toward Reliable Uptake Metrics in Large Vessel Vasculitis Studies

    Get PDF
    The aim of this study is to investigate the influence of sex, age, fat mass, fasting blood glucose level (FBGL), and estimated glomerular filtration rate (eGFR) on blood pool activity in patients with large vessel vasculitis (LVV). Blood pool activity was measured in the superior caval vein using mean, maximum, and peak standardized uptake values corrected for body weight (SUVs) and lean body mass (SULs) in 41 fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) scans of LVV patients. Sex influence on the blood pool activity was assessed with t-tests, while linear correlation analyses were used for age, fat mass, FBGL, and eGFR. Significantly higher SUVs were found in women compared with men, whereas SULs were similar between sexes. In addition, higher fat mass was associated with increased SUVs (r = 0.56 to 0.65; all p p > 0.05). Lower eGFR was associated with a higher FDG blood pool activity for all uptake values. In FDG-PET/CT studies with LVV patients, we recommend using SUL over SUV, while caution is advised in interpreting SUV and SUL measures when patients have impaired kidney function

    Hito shibō soshiki yurai kanyōkei kansaibōkabu kara no kyokakukyū oyobi kesshōban sansei

    Get PDF
    Angiogenic T (Tang) cells are mediators of vascular repair, and are characterized by surface expression of CXCR4. This receptor for stromal cell-derived factor-1α (SDF-1α) is cleaved by dipeptidyl peptidase-4 (DPP-4). Tang cell levels were investigated in people with type 2 diabetes mellitus (T2DM) compared with matched healthy controls and after treatment with the DPP-4 inhibitor Linagliptin. People with T2DM were randomized to 5 mg/day Linagliptin (n = 20) or placebo (n = 21) for 26 weeks. Tang cell frequency was identified in peripheral blood mononuclear cells (CD3+CD31+CXCR4+) and levels of endothelial progenitor cells (EPCs) (CD34+CD133+KDR+) were also assessed in whole blood. Circulating Tang cell levels were significantly lower in people with T2DM compared with the healthy control group. SDF-1α levels increased significantly in Linagliptin-treated people with T2DM compared to placebo, and a trend was observed in change of Tang cell levels, while EPC count did not change. In conclusion, circulating Tang cell levels were considerably lower in people with T2DM, while a trend was observed in recruitment of Tang cells after 26 weeks of treatment with Linagliptin. These data suggest that DPP-4 inhibitors may potentially exert beneficial effects on bone marrow-driven vascular repair

    [18F]FDG Uptake in Adipose Tissue Is Not Related to Inflammation in Type 2 Diabetes Mellitus

    Get PDF
    PURPOSE: 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) uptake is a marker of metabolic activity and is therefore used to measure the inflammatory state of several tissues. This radionuclide marker is transported through the cell membrane via glucose transport proteins (GLUTs). The aim of this study is to investigate whether insulin resistance (IR) or inflammation plays a role in [18F]FDG uptake in adipose tissue (AT). PROCEDURES: This study consisted of an in vivo clinical part and an ex vivo mechanistic part. In the clinical part, [18F]FDG uptake in abdominal visceral AT (VAT) and subcutaneous AT (SAT) was determined using PET/CT imaging in 44 patients with early type 2 diabetes mellitus (T2DM) (age 63 [54-66] years, HbA1c [6.3 ± 0.4 %], HOMA-IR 5.1[3.1-8.5]). Plasma levels were measured with ELISA. In the mechanistic part, AT biopsies obtained from 8 patients were ex vivo incubated with [18F]FDG followed by autoradiography. Next, a qRT-PCR analysis was performed to determine GLUT and cytokine mRNA expression levels. Immunohistochemistry was performed to determine CD68+ macrophage infiltration and GLUT4 protein expression in AT. RESULTS: In vivo VAT [18F]FDG uptake in patients with T2DM was inversely correlated with HOMA-IR (r = - 0.32, p = 0.034), and positively related to adiponectin plasma levels (r = 0.43, p = 0.003). Ex vivo [18F]FDG uptake in VAT was not related to CD68+ macrophage infiltration, and IL-1ß and IL-6 mRNA expression levels. Ex vivo VAT [18F]FDG uptake was positively related to GLUT4 (r = 0.83, p = 0.042), inversely to GLUT3 (r = - 0.83, p = 0.042) and not related to GLUT1 mRNA expression levels. CONCLUSIONS: In vivo [18F]FDG uptake in VAT from patients with T2DM is positively correlated with adiponectin levels and inversely with IR. Ex vivo [18F]FDG uptake in AT is associated with GLUT4 expression but not with pro-inflammatory markers. The effect of IR should be taken into account when interpreting data of [18F]FDG uptake as a marker for AT inflammation

    Performance Evaluation of a Semi-automated Method for [F-18]FDG Uptake in Abdominal Visceral Adipose Tissue

    Get PDF
    PurposeSeverity of abdominal obesity and possibly levels of metabolic activity of abdominal visceral adipose tissue (VAT) are associated with an increased risk for cardiovascular disease (CVD). In this context, the purpose of the current study was to evaluate the reproducibility and repeatability of a semi-automated method for assessment of the metabolic activity of VAT using 2-deoxy-2-[F-18]fluoro-D-glucose ([F-18]FDG) positron emission tomography (PET)/x-ray computed tomography (CT).ProceduresTen patients with lung cancer who underwent two baseline whole-body [F-18]FDG PET/low-dose (LD) CT scans within 1week were included. Abdominal VAT was automatically segmented using CT between levels L1-L5. The initial CT-based segmentation was further optimized using PET data with a standardized uptake value (SUV) threshold approach (range 1.0-2.5) and morphological erosion (range 0-5 pixels). The [F-18]FDG uptake in SUV that was measured by the automated method was compared with manual analysis. The reproducibility and repeatability were quantified using intraclass correlation coefficients (ICCs).ResultsThe metabolic assessment of VAT on [F-18]FDG PET/LDCT scans expressed as SUVmean, using an automated method showed high inter and intra observer (all ICCs >0.99) and overall repeatability (ICC=0.98). The manual method showed reproducible inter observer (all ICCs >0.92), but less intra observer (ICC=0.57) and less overall repeatability (ICC=0.78) compared with the automated method.ConclusionsOur proposed semi-automated method provided reproducible and repeatable quantitative analysis of [F-18]FDG uptake in VAT. We expect this method to aid future research regarding the role of VAT in development of CVD.</div

    Performance Evaluation of a Semi-automated Method for [F-18]FDG Uptake in Abdominal Visceral Adipose Tissue

    Get PDF
    PURPOSE: Severity of abdominal obesity and possibly levels of metabolic activity of abdominal visceral adipose tissue (VAT) are associated with an increased risk for cardiovascular disease (CVD). In this context, the purpose of the current study was to evaluate the reproducibility and repeatability of a semi-automated method for assessment of the metabolic activity of VAT using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET)/x-ray computed tomography (CT). PROCEDURES: Ten patients with lung cancer who underwent two baseline whole-body [18F]FDG PET/low-dose (LD) CT scans within 1 week were included. Abdominal VAT was automatically segmented using CT between levels L1-L5. The initial CT-based segmentation was further optimized using PET data with a standardized uptake value (SUV) threshold approach (range 1.0-2.5) and morphological erosion (range 0-5 pixels). The [18F]FDG uptake in SUV that was measured by the automated method was compared with manual analysis. The reproducibility and repeatability were quantified using intraclass correlation coefficients (ICCs). RESULTS: The metabolic assessment of VAT on [18F]FDG PET/LDCT scans expressed as SUVmean, using an automated method showed high inter and intra observer (all ICCs > 0.99) and overall repeatability (ICC = 0.98). The manual method showed reproducible inter observer (all ICCs > 0.92), but less intra observer (ICC = 0.57) and less overall repeatability (ICC = 0.78) compared with the automated method. CONCLUSIONS: Our proposed semi-automated method provided reproducible and repeatable quantitative analysis of [18F]FDG uptake in VAT. We expect this method to aid future research regarding the role of VAT in development of CVD
    corecore