63 research outputs found

    ELAWD GROUT HOPPER MOCK-UP TESTING

    Get PDF
    A 10-inch READCO mixer is used for mixing the premix (45 (wt%) fly ash, 45 wt% slag, and 10 wt% portland cement) with salt solution in the Saltstone Production Facility (SPF). The Saltstone grout free falls into the grout hopper which feeds the suction line leading to the Watson SPX 100 duplex hose pump. The Watson SPX 100 pumps the grout through approximately 1500 feet of piping prior to being discharged into the Saltstone Disposal Facility (SDF) vaults. The existing grout hopper has been identified by the Saltstone Enhanced Low Activity Waste Disposal (ELAWD) project for re-design. The current nominal working volume of this hopper is 12 gallons and does not permit handling an inadvertent addition of excess dry feeds. Saltstone Engineering has proposed a new hopper tank that will have a nominal working volume of 300 gallons and is agitated with a mechanical agitator. The larger volume hopper is designed to handle variability in the output of the READCO mixer and process upsets without entering set back during processing. The objectives of this task involve scaling the proposed hopper design and testing the scaled hopper for the following processing issues: (1) The effect of agitation on radar measurement. Formation of a vortex may affect the ability to accurately measure the tank level. The agitator was run at varying speeds and with varying grout viscosities to determine what parameters cause vortex formation and whether measurement accuracy is affected. (2) A dry feeds over addition. Engineering Calculating X-ESR-Z-00017 1 showed that an additional 300 pounds of dry premix added to a 300 gallon working volume would lower the water to premix ratio (W/P) from the nominal 0.60 to 0.53 based on a Salt Waste Processing Facility (SWPF) salt simulant. A grout with a W/P of 0.53 represents the upper bound of grout rheology that could be processed at the facility. A scaled amount of dry feeds will be added into the hopper to verify that this is a recoverable situation. (3) The necessity of baffles in the hopper. The preference of the facility is not to have baffles in the hopper; however, if the initial testing indicates inadequate agitation or difficulties with the radar measurement, baffles will be tested

    2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: Executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines

    Get PDF
    [Extract] Top 10 Take-Home Messages for the Primary Prevention of Cardiovascular Disease 1. The most important way to prevent atherosclerotic vascular disease, heart failure, and atrial fibrillation is to promote a healthy lifestyle throughout life. 2. A team-based care approach is an effective strategy for the prevention of cardiovascular disease. Clinicians should evaluate the social determinants of health that affect individuals to inform treatment decisions. 3. Adults who are 40 to 75 years of age and are being evaluated for cardiovascular disease prevention should undergo 10-year atherosclerotic cardiovascular disease (ASCVD) risk estimation and have a clinician–patient risk discussion before starting on pharmacological therapy, such as antihypertensive therapy, a statin, or aspirin. In addition, assessing for other risk-enhancing factors can help guide decisions about preventive interventions in select individuals, as can coronary artery calcium scanning. 4. All adults should consume a healthy diet that emphasizes the intake of vegetables, fruits, nuts, whole grains, lean vegetable or animal protein, and fish and minimizes the intake of trans fats, red meat and processed red meats, refined carbohydrates, and sweetened beverages. For adults with overweight and obesity, counseling and caloric restriction are recommended for achieving and maintaining weight loss. 5. Adults should engage in at least 150 minutes per week of accumulated moderate-intensity physical activity or 75 minutes per week of vigorous-intensity physical activity. 6. For adults with type 2 diabetes mellitus, lifestyle changes, such as improving dietary habits and achieving exercise recommendations, are crucial. If medication is indicated, metformin is first-line therapy, followed by consideration of a sodium-glucose cotransporter 2 inhibitor or a glucagon-like peptide-1 receptor agonist. 7. All adults should be assessed at every healthcare visit for tobacco use, and those who use tobacco should be assisted and strongly advised to quit. 8. Aspirin should be used infrequently in the routine primary prevention of ASCVD because of lack of net benefit. 9. Statin therapy is first-line treatment for primary prevention of ASCVD in patients with elevated low-density lipoprotein cholesterol levels (≥190 mg/dL), those with diabetes mellitus, who are 40 to 75 years of age, and those determined to be at sufficient ASCVD risk after a clinician–patient risk discussion. 10. Nonpharmacological interventions are recommended for all adults with elevated blood pressure or hypertension. For those requiring pharmacological therapy, the target blood pressure should generally be <130/80 mm Hg

    OPERATIONAL AND COMPOSITIONAL FACTORS THAT AFFECT THE PERFORMANCE PROPERTIES OF ARP/MCU SALTSTONE GROUT

    No full text
    The Saltstone Production Facility (SPF) receives low level waste (LLW) salt solution from Tank 50H for treatment and disposal. Tank 50H receives transfers from the Effluent Treatment Project (ETP), the H-Canyon General Purpose Evaporator, and the Actinide Removal Process/Modular Caustic Side Solvent Extraction Unit (ARP/MCU) Decontaminated Salt Solution Hold Tank (DSS-HT). At the SPF, the LLW is mixed with premix (a cementitious mixture of portland cement (PC), blast furnace slag (BFS) and Class F fly ash (FA)) in a Readco mixer to produce fresh (uncured) saltstone that is transferred to the Saltstone Disposal Facility (SDF) vaults. The saltstone formulation (mix design) must produce a grout waste form that meets both placement and performance properties. In previous simulated saltstone studies, multiple compositional factors were identified that drive the performance properties of saltstone made from the projected ARP/MCU salt solution. This composition was selected as salt solution simulant since ARP/MCU is the primary influent into Tank 50H. The primary performance property investigated was hydraulic conductivity since it is a variable input property to the saltstone Performance Assessment (PA) transport model. In addition, the porosity, also referred to as void structure, is another variable that impacts the PA response. In addition, Young's modulus and cured density are other performance properties analyzed in this report; however they are indicators of the performance of saltstone and not direct inputs into the PA. The data from previous studies showed that the largest impact on the performance properties of saltstone was due to curing temperature, followed by aluminate concentration in the salt solution, water to premix ratio and premix composition. However, due to the scope of the previous studies, only a few mixes were cured and analyzed at higher temperatures. The samples cured at 60 C had an increased hydraulic conductivity of approximately 600 times that of the sample cured at room temperature. The hydration reactions initiated during the mixing of the premix and salt solution continue during the curing period in the vaults to produce the hardened waste form product. The heat generated from exothermic hydration reactions results in a temperature increase in the vaults that depends on the composition of the decontaminated salt solution being dispositioned, the grout formulation (mix design) and the pour frequency and volume. This heat generation is a contributing factor to the temperature increase in the vaults that leads to an increased cure temperature for the grout. This report will further investigate the impact of curing temperature on saltstone performance properties (hydraulic conductivity, Young's modulus, porosity, etc.) over a range of aluminate concentration, water to premix (w/p) ratio and weight percent fly ash in the premix processed at the SPF. The three curing temperatures selected for this study were chosen to provide data at fixed cure temperatures that represent measured temperatures in the SDF vaults. This does not represent the conditions in the vault where the temperature of the saltstone is continually changing with time. For example, it may take several days for the saltstone to reach 60 C at a given elevation. Previous results demonstrated that the rates at which a selected curing temperature is reached affect the performance properties. The approach taken in this task, a rapid increase to the curing temperature, may be conservative with respect to decreased performance. Nevertheless, the data will provide a basis from which to determine the impact of curing temperature on saltstone performance as a function of key variables. A statistical evaluation of the results for these mixes will be performed to provide the range, and associated uncertainties, of hydraulic conductivity and other properties over this factor space

    Process Formulations And Curing Conditions That Affect Saltstone Properties

    No full text
    The first objective of this study was to analyze saltstone fresh properties to determine the feasibility of reducing the formulation water to premix (w/p) ratio while varying the amount of extra water and admixtures used during processing at the Saltstone Production Facility (SPF). The second part of this study was to provide information for understanding the impact of curing conditions (cure temperature, relative humidity (RH)) and processing formulation on the performance properties of cured saltstone

    Evaluation Of Saltstone Mixer Paddle Configuration For Improved Wear Resistance

    No full text
    A soft metal with low wear resistance (6000 series aluminum), was used to minimize run time while maximizing wear rate. Two paddle configurations were tested, with the first four paddles after the augers replaced by the wear paddles. The first configuration was all flat paddles, with the first paddle not aligned with the augers and is consistent with present SPF mixer. The second configuration had helical paddles for the first three stages after the augers and a flat paddle at the fourth stage. The first helical paddle was aligned with the auger flight for the second configuration. The all flat paddle configuration wear rate was approximately double the wear rate of the helical paddles for the first two sets of paddles after the augers. For both configurations, there was little or no wear on the third and fourth paddle sets based on mass change, indicating that the fully wetted premix materials are much less abrasive than the un-wetted or partially wetted premix. Additionally, inspection of the wear surface of the paddles at higher magnification showed the flat paddles were worn much more than the helical and is consistent with the wear rates. Aligning the auger discharge flight with the first set of helical paddles was effective in reducing the wear rate as compared to the flat paddle configuration. Changing the paddle configuration from flat to helical resulted in a slight increase in rheological properties. Although, both tests produced grout-like material that is within the processing rage of the SPF, it should be noted that cement is not included in the premix and water was used rather than salt solution, which does affect the rheology of the fresh grout. The higher rheological properties from the helical wear test are most likely due to the reduced number of shearing paddles in the mixer. In addition, there is variation in the rheological data for each wear test. This is most likely due to the way that the dry feeds enter the mixer from the dry feeder. The premix is discharged from the hopper in an unsteady fashion, where irregular sized clumps were observed leaving the discharge of the auger, though the auger speed is constant

    Herniated cerebellar tonsils and cough syncope

    No full text
    • …
    corecore