2,602 research outputs found
Discontinuous percolation transitions in real physical systems
We study discontinuous percolation transitions (PT) in the diffusion-limited
cluster aggregation model of the sol-gel transition as an example of real
physical systems, in which the number of aggregation events is regarded as the
number of bonds occupied in the system. When particles are Brownian, in which
cluster velocity depends on cluster size as with
, a larger cluster has less probability to collide with other
clusters because of its smaller mobility. Thus, the cluster is effectively more
suppressed in growth of its size. Then the giant cluster size increases
drastically by merging those suppressed clusters near the percolation
threshold, exhibiting a discontinuous PT. We also study the tricritical
behavior by controlling the parameter , and the tricritical point is
determined by introducing an asymmetric Smoluchowski equation.Comment: 5 pages, 5 figure
Eur J Human Genet
Heterozygous missense mutations in the serine-threonine kinase receptor BMPR1B result typically in brachydactyly type A2 (BDA2), whereas mutations in the corresponding ligand GDF5 cause brachydactyly type C (BDC). Mutations in the GDF inhibitor Noggin (NOG) or activating mutations in GDF5 cause proximal symphalangism (SYM1). Here, we describe a novel mutation in BMPR1B (R486Q) that is associated with either BDA2 or a BDC/SYM1-like phenotype. Functional investigations of the R486Q mutation were performed and compared with the previously reported BDA2-causing mutation R486W and WT BMPR1B. Overexpression of the mutant receptors in chicken micromass cultures resulted in a strong inhibition of chondrogenesis with the R486Q mutant, showing a stronger effect than the R486W mutant. To investigate the consequences of the BMPR1B mutations on the intracellular signal transduction, we used stably transfected C2C12 cells and measured the activity of SMAD-dependent and SMAD-independent pathways. SMAD activation after stimulation with GDF5 was suppressed in both mutants. Alkaline phosphatase induction showed an almost complete loss of activation by both mutants. Our data extend the previously known mutational and phenotypic spectrum associated with mutations in BMPR1B. Disturbances of NOG-GDF5-BMPR1B signaling cascade can result in similar clinical manifestations depending on the quantitative effect and mode of action of the specific mutations within the same functional pathway
Caloric Curves for small systems in the Nuclear Lattice Gas Model
For pedagogical reasons we compute the caloric curve for 11 particles in a
lattice. Monte-Carlo simulation can be avoided and exact results are
obtained. There is no back-bending in the caloric curve and negative specific
heat does not appear. We point out that the introduction of kinetic energy in
the nuclear Lattice Gas Model modifies the results of the standard Lattice Gas
Model in a profound way.Comment: 12 pages, Revtex, including 4 postscript figure
The ideal gas as an urn model: derivation of the entropy formula
The approach of an ideal gas to equilibrium is simulated through a
generalization of the Ehrenfest ball-and-box model. In the present model, the
interior of each box is discretized, {\it i.e.}, balls/particles live in cells
whose occupation can be either multiple or single. Moreover, particles
occasionally undergo random, but elastic, collisions between each other and
against the container walls. I show, both analitically and numerically, that
the number and energy of particles in a given box eventually evolve to an
equilibrium distribution which, depending on cell occupations, is binomial
or hypergeometric in the particle number and beta-like in the energy.
Furthermore, the long-run probability density of particle velocities is
Maxwellian, whereas the Boltzmann entropy exactly reproduces the
ideal-gas entropy. Besides its own interest, this exercise is also relevant for
pedagogical purposes since it provides, although in a simple case, an explicit
probabilistic foundation for the ergodic hypothesis and for the maximum-entropy
principle of thermodynamics. For this reason, its discussion can profitably be
included in a graduate course on statistical mechanics.Comment: 17 pages, 3 figure
Thermodynamic entropy of a many body energy eigenstate
It is argued that a typical many body energy eigenstate has a well defined
thermodynamic entropy and that individual eigenstates possess thermodynamic
characteristics analogous to those of generic isolated systems. We examine
large systems with eigenstate energies equivalent to finite temperatures. When
quasi-static evolution of a system is adiabatic (in the quantum mechanical
sense), two coupled subsystems can transfer heat from one subsystem to another
yet remain in an energy eigenstate. To explicitly construct the entropy from
the wave function, degrees of freedom are divided into two unequal parts. It is
argued that the entanglement entropy between these two subsystems is the
thermodynamic entropy per degree of freedom for the smaller subsystem. This is
done by tracing over the larger subsystem to obtain a density matrix, and
calculating the diagonal and off-diagonal contributions to the entanglement
entropy.Comment: 18 page
Fluctuating and dissipative dynamics of dark solitons in quasi-condensates
The fluctuating and dissipative dynamics of matter-wave dark solitons within
harmonically trapped, partially condensed Bose gases is studied both
numerically and analytically. A study of the stochastic Gross-Pitaevskii
equation, which correctly accounts for density and phase fluctuations at finite
temperatures, reveals dark soliton decay times to be lognormally distributed at
each temperature, thereby characterizing the previously predicted long lived
soliton trajectories within each ensemble of numerical realizations (S.P.
Cockburn {\it et al.}, Phys. Rev. Lett. 104, 174101 (2010)). Expectation values
for the average soliton lifetimes extracted from these distributions are found
to agree well with both numerical and analytic predictions based upon the
dissipative Gross-Pitaevskii model (with the same {\it ab initio} damping).
Probing the regime for which , we find average
soliton lifetimes to scale with temperature as , in agreement
with predictions previously made for the low-temperature regime .
The model is also shown to capture the experimentally-relevant decrease in the
visibility of an oscillating soliton due to the presence of background
fluctuations.Comment: 17 pages, 14 figure
Dynamic roughening and fluctuations of dipolar chains
Nonmagnetic particles in a carrier ferrofluid acquire an effective dipolar
moment when placed in an external magnetic field. This fact leads them to form
chains that will roughen due to Brownian motion when the magnetic field is
decreased. We study this process through experiments, theory and simulations,
three methods that agree on the scaling behavior over 5 orders of magnitude.
The RMS width goes initially as , then as before it
saturates. We show how these results complement existing results on polymer
chains, and how the chain dynamics may be described by a recent non-Markovian
formulation of anomalous diffusion.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
Quantum Dissipation and Decoherence via Interaction with Low-Dimensional Chaos: a Feynman-Vernon Approach
We study the effects of dissipation and decoherence induced on a harmonic
oscillator by the coupling to a chaotic system with two degrees of freedom.
Using the Feynman-Vernon approach and treating the chaotic system
semiclassically we show that the effects of the low dimensional chaotic
environment are in many ways similar to those produced by thermal baths. The
classical correlation and response functions play important roles in both
classical and quantum formulations. Our results are qualitatively similar to
the high temperature regime of the Caldeira-Leggett model.Comment: 31 pages, 4 figure
Electronic Theory for the Nonlinear Magneto-Optical Response of Transition-Metals at Surfaces and Interfaces: Dependence of the Kerr-Rotation on Polarization and on the Magnetic Easy Axis
We extend our previous study of the polarization dependence of the nonlinear
optical response to the case of magnetic surfaces and buried magnetic
interfaces. We calculate for the longitudinal and polar configuration the
nonlinear magneto-optical Kerr rotation angle. In particular, we show which
tensor elements of the susceptibilities are involved in the enhancement of the
Kerr rotation in nonlinear optics for different configurations and we
demonstrate by a detailed analysis how the direction of the magnetization and
thus the easy axis at surfaces and buried interfaces can be determined from the
polarization dependence of the nonlinear magneto-optical response, since the
nonlinear Kerr rotation is sensitive to the electromagnetic field components
instead of merely the intensities. We also prove from the microscopic treatment
of spin-orbit coupling that there is an intrinsic phase difference of
90 between tensor elements which are even or odd under magnetization
reversal in contrast to linear magneto-optics. Finally, we compare our results
with several experiments on Co/Cu films and on Co/Au and Fe/Cr multilayers. We
conclude that the nonlinear magneto-optical Kerr-effect determines uniquely the
magnetic structure and in particular the magnetic easy axis in films and at
multilayer interfaces.Comment: 23 pages Revtex, preprintstyle, 2 uuencoded figure
Fcc-bcc transition for Yukawa interactions determined by applied strain deformation
Calculations of the work required to transform between bcc and fcc phases
yield a high-precision bcc-fcc transition line for monodisperse point Yukawa
(screened-Couloumb) systems. Our results agree qualitatively but not
quantitatively with previously published simulations and phenomenological
criteria for the bcc-fcc transition. In particular, the bcc-fcc-fluid triple
point lies at a higher inverse screening length than previously reported.Comment: RevTex4, 9 pages, 6 figures. Discussion of phase coexistence
extended, a few other minor clarifications added, referencing improved.
Accepted for publication by Physical Review
- …