1,042 research outputs found
Central Diffraction in Proton-Proton Collisions at \,TeV with ALICE at LHC
A double-gap topology is used for filtering central-diffractive events from a
proton-proton minimum-bias data sample at a centre-of-mass energy
{\,TeV}. This topology is defined by particle activity in the ALICE
central barrel and absence of particle activity outside. The fraction of events
satisfying the double-gap requirement is found to be
{}. The background of this
double-gap fraction is estimated by studying the contributions of
non-diffractive, single- and double-diffractive dissociation processes as
modelled by Monte Carlo event generators, and is found to be about 10%.Comment: 4 pages, 2 figures, Proceedings Diffraction 2012 - International
Workshop on Diffraction in High-Energy Physics, Puerto del Carmen, Sept.
10-15, 201
Upgrade of the ALICE Inner Tracking System
During the Long Shutdown 2 of the LHC in 2018/2019, the ALICE experiment
plans the installation of a novel Inner Tracking System. It will replace the
current six layer detector system with a seven layer detector using Monolithic
Active Pixel Sensors. The upgraded Inner Tracking System will have
significantly improved tracking and vertexing capabilities, as well as readout
rate to cope with the expected increased Pb-Pb luminosity of the LHC. The
choice of Monolithic Active Pixel Sensors has been driven by the specific
requirements of ALICE as a heavy ion experiment dealing with rare processes at
low transverse momenta. This leads to stringent requirements on the material
budget of 0.3 per layer for the three innermost layers. Furthermore,
the detector will see large hit densities of on average for minimum-bias events in the
inner most layer and has to stand moderate radiation loads of 700 kRad TID and
1 MeV n NIEL at maximum. The
Monolithic Active Pixel Sensor detectors are manufactured using the TowerJazz
0.18 m CMOS Imaging Sensor process on wafers with a high-resistivity
epitaxial layer. This contribution summarises the recent R&D activities and
focuses on results on the large-scale pixel sensor prototypes.Comment: 10 pages, 8 figures, proceedings of VERTEX 2014, 15-19 September 201
Studies for the ALICE Inner Tracking System Upgrade
The ALICE experiment at the CERN LHC identifies D0 mesons via secondary-vertex reconstruction and topological cuts to reduce the corresponding combinatorial background in heavy-ion collisions. The D0 meson is produced promptly in initial, hard scatterings via the strong interaction or as feed-down from weakly decaying B hadrons. Within this thesis, a novel method for the separation of prompt and feed-down D0 mesons using cut variations was implemented and applied to data from p–Pb collisions at sqrt(s_NN) = 5.02 TeV. The effectiveness of the secondary-vertex reconstruction strongly depends on the performance and in particular the pointing resolution of the Inner Tracking System. The upgrade of the ALICE Inner Tracking System for the Long Shutdown 2 of the LHC in 2019/2020 will significantly improve its vertex-reconstruction and tracking capabilities. It will be equipped with Monolithic Active Pixel Sensors manufactured using the TowerJazz 180nm CMOS process on wafers with a high-resistivity epitaxial layer. In another part of this thesis, several pixel-chip prototypes of the ALPIDE architecture with in-pixel amplification and discrimination as well as in-matrix data reduction were characterised. The pALPIDE-2 prototype was measured to fulfil the requirements in terms of detection efficiency, fake-hit rate, position resolution and tolerance to irradiation with non-ionising energy loss.
Based on simulations modelling the tracking and vertex-reconstruction performance of the upgraded Inner Tracking System, the perspective of the feed-down separation using cut variations after the upgrade was assessed within this thesis
Digital Pixel Test Structures implemented in a 65 nm CMOS process
The ALICE ITS3 (Inner Tracking System 3) upgrade project and the CERN EP R&D
on monolithic pixel sensors are investigating the feasibility of the Tower
Partners Semiconductor Co. 65 nm process for use in the next generation of
vertex detectors. The ITS3 aims to employ wafer-scale Monolithic Active Pixel
Sensors thinned down to 20 to 40 um and bent to form truly cylindrical half
barrels. Among the first critical steps towards the realisation of this
detector is to validate the sensor technology through extensive
characterisation both in the laboratory and with in-beam measurements. The
Digital Pixel Test Structure (DPTS) is one of the prototypes produced in the
first sensor submission in this technology and has undergone a systematic
measurement campaign whose details are presented in this article.
The results confirm the goals of detection efficiency and non-ionising and
ionising radiation hardness up to the expected levels for ALICE ITS3 and also
demonstrate operation at +20 C and a detection efficiency of 99% for a DPTS
irradiated with a dose of 1 MeV ncm.
Furthermore, spatial, timing and energy resolutions were measured at various
settings and irradiation levels.Comment: Updated threshold calibration method. Implemented colorblind friendly
color palette in all figures. Updated reference
Characterisation of analogue Monolithic Active Pixel Sensor test structures implemented in a 65 nm CMOS imaging process
Analogue test structures were fabricated using the Tower Partners
Semiconductor Co. CMOS 65 nm ISC process. The purpose was to characterise and
qualify this process and to optimise the sensor for the next generation of
Monolithic Active Pixels Sensors for high-energy physics. The technology was
explored in several variants which differed by: doping levels, pixel geometries
and pixel pitches (10-25 m). These variants have been tested following
exposure to varying levels of irradiation up to 3 MGy and 1 MeV
n cm. Here the results from prototypes that feature direct
analogue output of a 44 pixel matrix are reported, allowing the
systematic and detailed study of charge collection properties. Measurements
were taken both using Fe X-ray sources and in beam tests using minimum
ionizing particles. The results not only demonstrate the feasibility of using
this technology for particle detection but also serve as a reference for future
applications and optimisations
Optimization of a 65 nm CMOS imaging process for monolithic CMOS sensors for high energy physics
The long term goal of the CERN Experimental Physics Department R&D on monolithic sensors
is the development of sub-100nm CMOS sensors for high energy physics. The first technology
selected is the TPSCo 65nm CMOS imaging technology. A first submission MLR1 included
several small test chips with sensor and circuit prototypes and transistor test structures. One of
the main questions to be addressed was how to optimize the sensor in the presence of significant in-pixel circuitry. In this paper this optimization is described as well as the experimental results from the MLR1 run confirming its effectiveness. A second submission investigating wafer-scale stitching has just been completed. This work has been carried out in strong synergy with the ITS3 upgrade of the ALICE experiment
Forward-central two-particle correlations in p-Pb collisions at root s(NN)=5.02 TeV
Two-particle angular correlations between trigger particles in the forward pseudorapidity range (2.5 2GeV/c. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B. V.Peer reviewe
Event-shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at root(NN)-N-S=2.76 TeV
Peer reviewe
Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions
We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe
Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC
Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe
- …