419 research outputs found

    Survival at the Summits: Amphibian Responses to Thermal Extremes, Disease, and Rapid Climate Change in the High Tropical Andes

    Get PDF
    Understanding biological responses to climate change is a primary concern in conservation biology. Of the ecosystems being rapidly impacted by climate change, those in the high-elevation tropics are among the most poorly studied. The tropical Andean biosphere includes record elevations above 5000 meters, where extreme environmental conditions challenge many organisms. In the Cordillera Vilcanota of southern Peru, frogs including Pleurodema marmoratum and Telmatobius marmoratus have expanded their ranges to 5244 – 5400 m into habitats created by glacial recession, making them among the highest recorded amphibians on Earth. To understand how hydrologic alterations from loss of glacial meltwater and climatic fluctuations affect these amphibians, I conduct a 36-month field study of reproductive phenology and develop a method to distinguish glacial meltwater-fed ponds and precipitation-fed ponds utilizing natural variation in stable isotopes of water (18O, 2H, and d-excess). My results suggest that some ponds critical for breeding populations may have lost their connection to glacial runoff. Ongoing deglaciation may transform these ponds from permanent to ephemeral habitats, leading to the extirpation of the fully aquatic species, T. marmoratus. The 2015/2016 El Niño delayed the onset of the 2015 wet season and shortened the P. marmoratum breeding and tadpole development period in ephemeral ponds. I examine regional patterns of amphibian occupancy and prevalence of the deadly amphibian pathogen Batrachochytrium dendrobaditis in unexplored high-elevation zones that were until recent decades covered by permanent ice. Next, I examine adaptive strategies that allow these two frog species to persist in the harsh high-elevation environment. Pleurodema marmoratum withstands the daily freeze-thaw cycle by utilizing a wide thermal tolerance range (from below 0ºC to CTmax \u3e 32ºC) and I report the first evidence of frost tolerance in a tropical frog. My research compares divergent strategies allowing two anuran species to persist through disease and variable, extreme conditions in high-mountain environments, providing a better understanding of responses to and consequences of climate change for some of the world\u27s highest life forms

    Morphological Identification of Parasites Found in Ducks (Family Anatidae) Along the Mississippi River: A Parasitology Class Project

    Get PDF
    Ducks (Anatidae) can be found across much of the United States and are hosts to a variety of parasites such as nematodes, trematodes or cestodes. This study focused on identifying the species of the parasites found within ducks based on their morphological features. The morphological structures consisted of body shape, internal organs, mouthparts, and length. The ducks used in this study were legally harvested and donated by hunters from areas across the Mississippi River in Buffalo County and Trempealeau County Wisconsin. A total of 108 ducks have been analyzed for parasites. It is important to identify the types of parasites that use ducks as a host, to see if they are harmful to the ducks so that they can be better managed. Necropsy was performed on different species of ducks to extract endo and ectoparasites. The extracted parasites were stained using carmine borax so they could be viewed using microscopy. While examining the parasites under the microscope, length and width measurements were taken as well as identifying key features like hold fast organs. A published key was used as a guide to identify parasites based on the measurements and key features present. The identified parasites were compared with DNA analysis from another research group to help ensure that the identification of the parasites was correct. Finally, identifications were compared to published articles containing past research found on parasites in ducks

    Characterization of the 4-canonical birationality of algebraic threefolds

    Full text link
    In this article we present a 3-dimensional analogue of a well-known theorem of E. Bombieri (in 1973) which characterizes the bi-canonical birationality of surfaces of general type. Let XX be a projective minimal 3-fold of general type with Q\mathbb{Q}-factorial terminal singularities and the geometric genus pg(X)5p_g(X)\ge 5. We show that the 4-canonical map ϕ4\phi_4 is {\it not} birational onto its image if and only if XX is birationally fibred by a family C\mathscr{C} of irreducible curves of geometric genus 2 with KXC0=1K_X\cdot C_0=1 where C0C_0 is a general irreducible member in C\mathscr{C}.Comment: 25 pages, to appear in Mathematische Zeitschrif

    Flux-Enabled Exploration of the Role of Sip1 in galactose yeast metabolism

    Get PDF
    13C metabolic flux analysis (13C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference Saccharomyces cerevisiae exhibits for glucose over galactose, a phenomenon known as glucose repression or carbon catabolite repression. The SIP1 gene, encoding a part of this complex, has received little attention, presumably, because its knockout lacks a growth phenotype. We present a fluxomic investigation of the relative effects of the presence of galactose in classically glucose-repressing media and/or knockout of SIP1 using a multi-scale variant of 13C MFA known as 2-Scale 13C metabolic flux analysis (2S-13C MFA). In this study, all strains have the galactose metabolism deactivated (gal1Δ background) so as to be able to separate the metabolic effects purely related to glucose repression from those arising from galactose metabolism. The resulting flux profiles reveal that the presence of galactose in classically glucose-repressing conditions, for a CEN.PK113-7D gal1Δ background, results in a substantial decrease in pentose phosphate pathway (PPP) flux and increased flow from cytosolic pyruvate and malate through the mitochondria toward cytosolic branched-chain amino acid biosynthesis. These fluxomic redistributions are accompanied by a higher maximum specific growth rate, both seemingly in violation of glucose repression. Deletion of SIP1 in the CEN.PK113-7D gal1Δ cells grown in mixed glucose/galactose medium results in a further increase. Knockout of this gene in cells grown in glucose-only medium results in no change in growth rate and a corresponding decrease in glucose and ethanol exchange fluxes and flux through pathways involved in aspartate/threonine biosynthesis. Glucose repression appears to be violated at a 1/10 ratio of galactose-to-glucose. Based on the scientific literature, we may have conducted our experiments near a critical sugar ratio that is known to allow galactose to enter the cell. Additionally, we report a number of fluxomic changes associated with these growth rate increases and unexpected flux profile redistributions resulting from deletion of SIP1 in glucose-only medium

    Atomic excitation during recollision-free ultrafast multi-electron tunnel ionization

    Full text link
    Modern intense ultrafast pulsed lasers generate an electric field of sufficient strength to permit tunnel ionization of the valence electrons in atoms. This process is usually treated as a rapid succession of isolated events, in which the states of the remaining electrons are neglected. Such electronic interactions are predicted to be weak, the exception being recollision excitation and ionization caused by linearly-polarized radiation. In contrast, it has recently been suggested that intense field ionization may be accompanied by a two-stage `shake-up' reaction. Here we report a unique combination of experimental techniques that enables us to accurately measure the tunnel ionization probability for argon exposed to 50 femtosecond laser pulses. Most significantly for the current study, this measurement is independent of the optical focal geometry, equivalent to a homogenous electric field. Furthermore, circularly-polarized radiation negates recollision. The present measurements indicate that tunnel ionization results in simultaneous excitation of one or more remaining electrons through shake-up. From an atomic physics standpoint, it may be possible to induce ionization from specific states, and will influence the development of coherent attosecond XUV radiation sources. Such pulses have vital scientific and economic potential in areas such as high-resolution imaging of in-vivo cells and nanoscale XUV lithography.Comment: 17 pages, 4 figures, original format as accepted by Nature Physic

    Anti-Pluricanonical Systems On Q-Fano Threefolds

    Full text link
    We investigate birationality of the anti-pluricanonical map ϕm\phi_{-m}, the rational map defined by the anti-pluricanonical system mK|-mK|, on Q\mathbb{Q}-Fano threefolds.Comment: 18 page

    Medial patellofemoral ligament injury patterns and associated pathology in lateral patella dislocation: an MRI study

    Get PDF
    BACKGROUND: Lateral Patella dislocations are common injuries seen in the active and young adult populations. Our study focus was to evaluate medial patellofemoral ligament (MPFL) injury patterns and associated knee pathology using Magnetic Resonance Imaging studies. METHODS: MRI studies taken at one imaging site between January, 2007 to January, 2008 with the final diagnosis of patella dislocation were screened for this study. Of the 324 cases that were found, 195 patients with lateral patellar dislocation traumatic enough to cause bone bruises on the lateral femoral trochlea and the medial facet of the patella were selected for this study. The MRI images were reviewed by three independent observers for location and type of MPFL injury, osteochondral defects, loose bodies, MCL and meniscus tears. The data was analyzed as a single cohort and by gender. RESULTS: This study consisted of 127 males and 68 females; mean age of 23 yrs. Tear of the MPFL at the patellar attachment occurred in 93/195 knees (47%), at the femoral attachment in 50/195 knees (26%), and at both the femoral and patella attachment sites in 26/195 knees (13%). Attenuation of the MPFL without rupture occurred in 26/195 knees (13%). Associated findings included loose bodies in 23/195 (13%), meniscus tears 41/195 (21%), patella avulsion/fracture in 14/195 (7%), medial collateral ligament sprains/tears in 37/195 (19%) and osteochondral lesions in 96/195 knees (49%). Statistical analysis showed females had significantly more associated meniscus tears than the males (27% vs. 17%, p = 0.04). Although not statistically significant, osteochondral lesions were seen more in male patients with acute patella dislocation (52% vs. 42%, p = 0.08). CONCLUSION: Patients who present with lateral patella dislocation with the classic bone bruise pattern seen on MRI will likely rupture the MPFL at the patellar side. Females are more likely to have an associated meniscal tear than males; however, more males have underlying osteochondral lesions. Given the high percentage of associated pathology, we recommend a MRI of the knee in all patients who present with acute patella dislocation

    Opportunities for organoids as new models of aging.

    Get PDF
    The biology of aging is challenging to study, particularly in humans. As a result, model organisms are used to approximate the physiological context of aging in humans. However, the best model organisms remain expensive and time-consuming to use. More importantly, they may not reflect directly on the process of aging in people. Human cell culture provides an alternative, but many functional signs of aging occur at the level of tissues rather than cells and are therefore not readily apparent in traditional cell culture models. Organoids have the potential to effectively balance between the strengths and weaknesses of traditional models of aging. They have sufficient complexity to capture relevant signs of aging at the molecular, cellular, and tissue levels, while presenting an experimentally tractable alternative to animal studies. Organoid systems have been developed to model many human tissues and diseases. Here we provide a perspective on the potential for organoids to serve as models for aging and describe how current organoid techniques could be applied to aging research

    Elective Tracheotomy in Patients Receiving Mandibular Reconstructions: Reduced Postoperative Ventilation Time and Lower Incidence of Hospital-Acquired Pneumonia

    Get PDF
    Elective tracheotomy (ET) secures the airway and prevents adverse airway-related events as unplanned secondary tracheotomy (UT), prolonged ventilation (PPV) or nosocomial infection. The primary objective of this study was to identify factors predisposing for airway complications after reconstructive lower ja surgery. We reviewed records of patients undergoing mandibulectomy and microvascular bone reconstruction (N = 123). Epidemiological factors, modus of tracheotomy regarding ET and UT, postoperative ventilation time and occurrence of hospital-acquired pneumonia HAP were recorded. Predictors for PPV and HAP, ET and UT were identified. A total of 82 (66.7%) patients underwent tracheotomy of which 12 (14.6%) were performed as UT. A total of 52 (42.3%) patients presented PPV, while 19 (15.4%) developed HAP. Increased operation time (OR 1.004, p = 0.005) and a difficult airway (OR 2.869, p = 0.02) were predictors, while ET reduced incidence of PPV (OR 0.054, p = 0.006). A difficult airway (OR 4.711, p = 0.03) and postoperative delirium (OR 6.761, p = 0.01) increased UT performance. HAP increased with anesthesia induction time (OR 1.268, p = 0.001) and length in ICU (OR 1.039, p = 0.009) while decreasing in ET group (HR 0.32, p = 0.02). OR for ET increased with mounting CCI (OR 1.462, p = 0.002) and preoperative radiotherapy (OR 2.8, p = 0.018). ET should be strongly considered in patients with increased CCI, preoperative radiotherapy and prolonged operation time. ET shortened postoperative ventilation time and reduced HAP
    corecore