5,721 research outputs found

    The Working of the New Hampshire Doctrine of Criminal Insanity

    Get PDF

    The Working of the New Hampshire Doctrine of Criminal Insanity

    Get PDF

    Alopecia areata: a multifactorial autoimmune condition

    Get PDF
    Alopecia areata is an autoimmune disease that results in non-scarring hair loss, and it is clinically characterised by small patches of baldness on the scalp and/or around the body. It can later progress to total loss of scalp hair (Alopecia totalis) and/or total loss of all body hair (Alopecia universalis). The rapid rate of hair loss and disfiguration caused by the condition causes anxiety on patients and increases the risks of developing psychological and psychiatric complications. Hair loss in alopecia areata is caused by lymphocytic infiltrations around the hair follicles and IFN-Îł. IgG antibodies against the hair follicle cells are also found in alopecia areata sufferers. In addition, the disease coexists with other autoimmune disorders and can come secondary to infections or inflammation. However, despite the growing knowledge about alopecia areata, the aetiology and pathophysiology of disease are not well defined. In this review we discuss various genetic and environmental factors that cause autoimmunity and describe the immune mechanisms that lead to hair loss in alopecia areata patients

    Characterization of 40-Gbit/s pulses generated using a lithium niobate modulator at 1550 nm using frequency resolved optical gating

    Get PDF
    The characteristics of 40-Gbit/s pulses generated by exploiting the nonlinear characteristics of a Mach-Zender Lithium Niobate modulator are presented. A high spectral resolution frequency resolved optical gating apparatus has been developed to allow for the complete characterization of the intensity and phase of these pulses. The use of these measurements to simplify the design and optimization of an 80-Gbit/s pulse source, based on this 40-Gbit/s source followed by a nonlinear fiber compressor and multiplexer, is also demonstrated

    Chromatic dispersion monitoring for high-speed WDM systems using two-photon absorption in a semiconductor microcavity

    Get PDF
    This paper presents a theoretical and experimental investigation into the use of a two-photon absorption (TPA) photodetector for use in chromatic dispersion (CD) monitoring in high-speed, WDM network. In order to overcome the inefficiency associated with the nonlinear optical-to-electrical TPA process, a microcavity structure is employed. An interesting feature of such a solution is the fact that the microcavity enhances only a narrow wavelength range determined by device design and angle at which the signal enters the device. Thus, a single device can be used to monitor a number of different wavelength channels without the need for additional external filters. When using a nonlinear photodetector, the photocurrent generated for Gaussian pulses is inversely related to the pulsewidth. However, when using a microcavity structure, the cavity bandwidth also needs to be considered, as does the shape of the optical pulses incident on the device. Simulation results are presented for a variety of cavity bandwidths, pulse shapes and durations, and spacing between adjacent wavelength channels. These results are verified experimental using a microcavity with a bandwidth of 260 GHz (2.1 nm) at normal incident angle, with the incident signal comprising of two wavelength channels separated by 1.25 THz (10 nm), each operating at an aggregate data rate of 160 Gb/s. The results demonstrate the applicability of the presented technique to monitor accumulated dispersion fluctuations in a range of 3 ps/nm for 160 Gb/s RZ data channel

    Optimization of optical data transmitters for 40-Gb/s lightwave systems using frequency resolved optical gating

    Get PDF
    The measurement technique of frequency resolved optical gating has been used to optimize the phase of a 40-GHz train of optical pulses generated using a continuous-wave laser gated with an external modulator. This technique will be vital for optimization of optical transmitters to be used in systems operating at 40 Gb/s and beyond, as standard measurement techniques will not suffice to optimize such high-speed systems

    All-optical pulse processing for advanced photonic communication system

    Get PDF
    This paper investigates the use of a two-photon absorption photodetector for high speed processing of ultrashort optical pulses in advanced photonic communication systems. Specifically the paper describes how the two-photon absorption photodetector maybe employed for chromatic dispersion monitoring in high-speed, wavelength division multiplexed networks, and also for reducing multiple access interference noise in an optical code division multiplexed system

    Pulse source for 80 Gb/s systems using a gain-wwitched laser diode followed by a nonlinearly chirped grating

    Get PDF
    This work presents the generation of 3.5 ps pulses at a repetition rate of 10 GHz and the optimization of the pulse spectrum. The output pulses are near transform limited and have pulse pedestals that are virtually eliminated to 35 dB down from the peak of the pulse, thus providing a source suitable for use in 80 Gb/s OTDM systems

    Two-photon-absorption-based OSNR monitor for NRZ-PSK transmission systems

    Get PDF
    A two-photon absorption microcavity-based technique for monitoring in-band optical signal-to-noise ratio (OSNR) in nonreturn-to-zero phase-shift-keying systems is presented. Experiments using a 10-Gb/s differential phase-shift-keying system showed that accurate measurements ( 1 dB) were possible for OSNRs in excess of 20 dB
    • 

    corecore