1,632 research outputs found

    Probabilistic quantum phase-space simulation of Bell violations and their dynamical evolution

    Full text link
    Quantum simulations of Bell inequality violations are numerically obtained using probabilistic phase space methods, namely the positive P-representation. In this approach the moments of quantum observables are evaluated as moments of variables that have values outside the normal eigenvalue range. There is thus a parallel with quantum weak measurements and weak values. Nevertheless, the representation is exactly equivalent to quantum mechanics. A number of states violating Bell inequalities are sampled, demonstrating that these quantum paradoxes can be treated with probabilistic methods. We treat quantum dynamics by simulating the time evolution of the Bell state formed via parametric down-conversion, and discuss multi-mode generalizations

    Probabilistic simulation of mesoscopic "Schr\"odinger cat" states

    Full text link
    We carry out probabilistic phase-space sampling of mesoscopic Schr\"odinger cat quantum states, demonstrating multipartite Bell violations for up to 60 qubits. We use states similar to those generated in photonic and ion-trap experiments. These results show that mesoscopic quantum superpositions are directly accessible to probabilistic sampling, and we analyze the properties of sampling errors. We also demonstrate dynamical simulation of super-decoherence in ion traps. Our computer simulations can be either exponentially faster or slower than experiment, depending on the correlations measured

    Quantum probabilistic sampling of multipartite 60-qubit Bell inequality violations

    Full text link
    We show that violation of genuine multipartite Bell inequalities can be obtained with sampled, probabilistic phase space methods. These genuine Bell violations cannot be replicated if any part of the system is described by a local hidden variable theory. The Bell violations are simulated probabilistically using quantum phase-space representations. We treat mesoscopically large Greenberger-Horne-Zeilinger (GHZ) states having up to 60 qubits, using both a multipartite SU(2) Q-representation and the positive P-representation. Surprisingly, we find that sampling with phase-space distributions can be exponentially faster than experiment. This is due to the classical parallelism inherent in the simulation of quantum measurements using phase-space methods. Our probabilistic sampling method predicts a contradiction with local realism of "Schr\"odinger-cat" states that can be realized as a GHZ spin state, either in ion traps or with photonic qubits. We also present a quantum simulation of the observed super-decoherence of the ion-trap "cat" state, using a phenomenological noise model
    corecore