19,937 research outputs found

    Overcoming change fatigue: lessons from Glasgow's National Health Service

    Get PDF
    Structured Abstract Purpose of this paper This paper explores the practicalities of organizational change in complex settings where much change has already occurred. It therefore offers insights into tackling and overcoming change fatigue. Design/methodology/approach The paper uses a longitudinal study of change within a healthcare organization. The paper draws on interviews, focus groups and observations during a 2.5 year long action research project. Findings The paper reports findings on the speed at which change takes place, the importance of communication and the burden placed on senior officers during such communication and consultation processes, the use of appropriate external resources and expertise, the benefits of sharing best practice across sectors and the role of academic researchers in change processes. What is original/value of paper The paper offers valuable insights to those charged with effecting organizational change in change fatigued settings

    Cardiovascular effects of calcium supplementation

    Get PDF
    Peer reviewedPostprin

    An unusual pi* shape resonance in the near-threshold photoionization of S(1) para-difluorobenzene

    Get PDF
    Previously reported dramatic changes in photoelectron angular distributions (PADs) as a function of photoelectron kinetic energy following the ionization of S1 p-difluorobenzene are shown to be explained by a shape resonance in the b(2g) symmetry continuum. The characteristics of this resonance are clearly demonstrated by a theoretical multiple-scattering treatment of the photoionization dynamics. New experimental data are presented which demonstrate an apparent insensitivity of the PADs to both vibrational motion and prepared molecular alignment, however, the calculations suggest that strong alignment effects may nevertheless be recognized in the detail of the comparison with experimental data. The apparent, but unexpected, indifference to vibrational excitation is rationalized by considering the nature of the resonance. The correlation of this shape resonance in the continuum with a virtual pi* antibonding orbital is considered. Because this orbital is characteristic of the benzene ring, the existence of similar resonances in related substituted benzenes is discussed.Bellm, SM: Davies, JA: Whiteside, PT; Guo, J: Powis, I; and Reid KL

    65 years of meteor radar research at Adelaide

    Get PDF
    Iain M. Reid, and Joel Younge

    Brown dwarfs in the Hyades and beyond?

    Full text link
    We have used both the Low-Resolution Imaging Spectrograph and the HIRES echelle spectrograph on the Keck telescopes to obtain spectra of twelve candidate members of the Hyades cluster identified by Leggett and Hawkins (1988, 1989). All of the objects are chromospherically-active, late-type M-dwarfs, with Hα\alpha equivalent widths varying from 1 to 30\AA. Based on our measured radial velocities, the level of stellar activity and other spectroscopic features, only one of the twelve stars has properties consistent with cluster membership. We consider how this result affects estimates of the luminosity and mass function of the Hyades cluster. Five of the eleven field stars have weak K I 7665/7699\AA and CaH absorption as compared with M-dwarf standards of the same spectral type, suggesting a lower surface gravity. Two of these sources, LH0416+14 and LH0419+15, exhibit significant lithium 6708 \AA absorption. Based partly on parallax measurements by the US Naval Observatory (Harris et al, 1998), we identify all five as likely to be young, pre-main sequence objects in or near the Taurus-Auriga association at distances of between 150 and 250 parsecs. A comparison with theoretical models of pre-main sequence stars indicates masses of less than 0.05 M_\odot.Comment: to appear in AJ, January 1999; 34 pages, (Latex format), including 10 embedded postscript figures and two table

    Interferometer angle-of-arrival determination using precalculated phases

    Get PDF
    Published online 1 SEP 2017A method has been developed to determine the angle of arrival (AoA) of incident radiation using precomputed lookup tables. The phase difference between two receiving antennas can be used to infer AoA as measured from the pair baseline, but there will be more than one possible solution for antenna spacings greater than or equal to half a wavelength. Larger spacings are preferable to minimize mutual coupling of elements in the receive array and to decrease the relative uncertainty in measured phase difference. We present a solution that uses all unique antenna pairs to determine probabilities for all possible azimuth and zenith values. Prior to analysis, the expected phase differences for all AoAs are calculated for each antenna pair. For a received signal, histograms of possible AoAs for each antenna pair phase difference are extracted and added to produce a two‐dimensional probability density array that will maximize at the true value of the AoA. A benefit of this method is that all possible antenna pairs are utilized rather than the restriction to specific pairs along baselines used by some interferometer algorithms. Numerical simulations indicate that performance of the suggested algorithm exceeds that of existing methods, with the benefit of additional flexibility in antenna placement. Meteor radar data have been used to test this method against existing methods, with excellent agreement between the two approaches. This method of AoA determination will allow the construction of low‐cost interferometric direction finding arrays with different layouts, including construction of difficult terrain and three‐dimensional antenna arrangements. Plain Language Summary A method has been developed to determine the direction that radio waves are coming from when detected by an arrangement of antennas. The method looks at each of the unique pairs of antennas and compares the received signal with what would be expected for all possible directions. The results from all of the pairs of antennas are added to find the true direction that the radio waves are coming from. This improves the accuracy of simple radars and allows different types of antenna patterns to be used. Computer simulations show that the suggested method is very effective. Tests of data from a real radar also show excellent agreement between the new method and existing techniques.J. P. Younger and I. M. Rei

    Challenges in using GPUs for the real-time reconstruction of digital hologram images

    Get PDF
    This is the pre-print version of the final published paper that is available from the link below.In-line holography has recently made the transition from silver-halide based recording media, with laser reconstruction, to recording with large-area pixel detectors and computer-based reconstruction. This form of holographic imaging is an established technique for the study of fine particulates, such as cloud or fuel droplets, marine plankton and alluvial sediments, and enables a true 3D object field to be recorded at high resolution over a considerable depth. The move to digital holography promises rapid, if not instantaneous, feedback as it avoids the need for the time-consuming chemical development of plates or film film and a dedicated replay system, but with the growing use of video-rate holographic recording, and the desire to reconstruct fully every frame, the computational challenge becomes considerable. To replay a digital hologram a 2D FFT must be calculated for every depth slice desired in the replayed image volume. A typical hologram of ~100 μm particles over a depth of a few hundred millimetres will require O(10^3) 2D FFT operations to be performed on a hologram of typically a few million pixels. In this paper we discuss the technical challenges in converting our existing reconstruction code to make efficient use of NVIDIA CUDA-based GPU cards and show how near real-time video slice reconstruction can be obtained with holograms as large as 4096 by 4096 pixels. Our performance to date for a number of different NVIDIA GPU running under both Linux and Microsoft Windows is presented. The recent availability of GPU on portable computers is discussed and a new code for interactive replay of digital holograms is presented

    Three newly-discovered M-dwarf companions of Solar Neighbourhood stars

    Get PDF
    We present low-resolution spectroscopy of newly-discovered candidate companions to three stars in the Solar Neighbourhood. All three companions are M dwarfs, with spectral types ranging from M4 to M9.5. In two cases, G85-55`B' (M6) and G87-9`B' (M4), we have circumstantial evidence from spectroscopy, photometry and limited astrometry that the systems are physical binaries; in the third, G216-7B (M9.5), comparison of POSS II IIIaF plate material and the 2MASS image indicates common proper motion. The primary star in this system, G216-7A (M0), appears itself to be an unresolved, nearly equal-mass binary. All three low-mass companions are highly likely to be stellar in nature, although G216-7B lies very close to the hydrogen-burning limit.Comment: Accepted for publication in PASP; 21 pages, 6 figure
    corecore