152 research outputs found

    Tunable Charge Detectors for Semiconductor Quantum Circuits

    Full text link
    Nanostructures defined in high-mobility two-dimensional electron systems offer a unique way of controlling the microscopic details of the investigated device. Quantum point contacts play a key role in these investigations, since they are not only a research topic themselves, but turn out to serve as convenient and powerful detectors for their electrostatic environment. We investigate how the sensitivity of charge detectors can be further improved by reducing screening, increasing the capacitive coupling between charge and detector and by tuning the quantum point contacts' confinement potential into the shape of a localized state. We demonstrate the benefits of utilizing a localized state by performing fast and well-resolved charge detection of a large quantum dot in the quantum Hall regime

    Strong Coupling Cavity QED with Gate-Defined Double Quantum Dots Enabled by a High Impedance Resonator

    Full text link
    The strong coupling limit of cavity quantum electrodynamics (QED) implies the capability of a matter-like quantum system to coherently transform an individual excitation into a single photon within a resonant structure. This not only enables essential processes required for quantum information processing but also allows for fundamental studies of matter-light interaction. In this work we demonstrate strong coupling between the charge degree of freedom in a gate-detuned GaAs double quantum dot (DQD) and a frequency-tunable high impedance resonator realized using an array of superconducting quantum interference devices (SQUIDs). In the resonant regime, we resolve the vacuum Rabi mode splitting of size 2g/2π=2382g/2\pi = 238 MHz at a resonator linewidth κ/2π=12\kappa/2\pi = 12 MHz and a DQD charge qubit dephasing rate of γ2/2π=80\gamma_2/2\pi = 80 MHz extracted independently from microwave spectroscopy in the dispersive regime. Our measurements indicate a viable path towards using circuit based cavity QED for quantum information processing in semiconductor nano-structures

    Increasing the {\nu} = 5 / 2 gap energy: an analysis of MBE growth parameters

    Full text link
    The fractional quantized Hall state (FQHS) at the filling factor {\nu} = 5/2 is of special interest due to its possible application for quantum computing. Here we report on the optimization of growth parameters that allowed us to produce two-dimensional electron gases (2DEGs) with a 5/2 gap energy up to 135 mK. We concentrated on optimizing the MBE growth to provide high 5/2 gap energies in "as-grown" samples, without the need to enhance the 2DEGs properties by illumination or gating techniques. Our findings allow us to analyse the impact of doping in narrow quantum wells with respect to conventional DX-doping in AlxGa1-xAs. The impact of the setback distance between doping layer and 2DEG was investigated as well. Additionally, we found a considerable increase in gap energy by reducing the amount of background impurities. To this end growth techniques like temperature reductions for substrate and effusion cells and the reduction of the Al mole fraction in the 2DEG region were applied

    Universal nuclear focusing of confined electron spins

    Full text link
    For spin-based quantum computation in semiconductors, dephasing of electron spins by a fluctuating background of nuclear spins is a main obstacle. Here we show that this nuclear background can be precisely controlled in generic quantum dots by periodically exciting electron spins. We demonstrate this universal phenomenon in many-electron GaAs/AlGaAs quantum dot ensembles using optical pump-probe spectroscopy. A feedback mechanism between the saturable electron spin polarization and the nuclear system focuses the electron spin precession frequency into discrete spin modes. Employing such control of nuclear spin polarization, the electron spin lifetime within individual dots can surpass the limit of nuclear background fluctuations, thus substantially enhancing the spin coherence time. This opens the door to achieve long electron spin coherence times also in lithographically-defined many-electron systems that can be controlled in shape, size and position
    • …
    corecore