170 research outputs found

    Point Defect Dynamics in Two-Dimensional Colloidal Crystals

    Full text link
    We study the topological configurations and dynamics of individual point defect vacancies and interstitials in a two-dimensional colloidal crystal. Our Brownian dynamics simulations show that the diffusion mechanism for vacancy defects occurs in two phases. The defect can glide along the crystal lattice directions, and it can rotate during an excited topological transition configuration to assume a different direction for the next period of gliding. The results for the vacancy defects are in good agreement with recent experiments. For the interstitial point defects, which were not studied in the experiments, we find several of the same modes of motion as in the vacancy defect case along with two additional diffusion pathways. The interstitial defects are more mobile than the vacancy defects due to the more two-dimensional nature of the diffusion of the interstitial defects.Comment: 8 pages, 9 postscript figures. Version to appear in Phys. Rev.

    On the origin of the reversed vortex ratchet motion

    Full text link
    We experimentally demonstrate that the origin of multiply reversed rectified vortex motion in an asymmetric pinning landscape is a consequence not only of the vortex-vortex interactions but also essentially depends on the ratio between the characteristic interaction distance and the period of the asymmetric pinning potential. Our system consists of an Al film deposited on top of a square array of size-graded magnetic dots with a constant lattice period a=2\mu m. Four samples with different periods of the size gradient d were investigated. For large d the dc voltage Vdc recorded under a sinusoidal ac excitation indicates that the average vortex drift is from bigger to smaller dots for all explored positive fields. As d is reduced a series of sign reversals in the dc response are observed as a function of field. We show that the number of sign reversals increases as d decreases. These findings are in agreement with recent computer simulations and illustrate the relevance of the different characteristic lengths for the vortex rectification effects.Comment: accepted in Phys. Rev. Let

    Dynamical Phases of Driven Vortices Interacting with Periodic Pinning

    Full text link
    The finite temperature dynamical phases of vortices in films driven by a uniform force and interacting with the periodic pinning potential of a square lattice of columnar defects are investigated by Langevin dynamics simulations of a London model. Vortices driven along the [0,1] direction and at densities for which there are more vortices than columnar defects (B>BÏ•B>B_{\phi}) are considered. At low temperatures, two new dynamical phases, elastic flow and plastic flow, and a sharp transition between them are identified and characterized according to the behavior of the vortex spatial order, velocity distribution and frequency-dependent velocity correlationComment: 4 pages with 4 figures. To be published in Phys. Rev. B Rapid Communication

    Dynamical Ordering of Driven Stripe Phases in Quenched Disorder

    Full text link
    We examine the dynamics and stripe formation in a system with competing short and long range interactions in the presence of both an applied dc drive and quenched disorder. Without disorder, the system forms stripes organized in a labyrinth state. We find that, when the disorder strength exceeds a critical value, an applied dc drive can induce a dynamical stripe ordering transition to a state that is more ordered than the originating undriven, unpinned pattern. We show that signatures in the structure factor and transport properties correspond to this dynamical reordering transition, and we present the dynamic phase diagram as a function of strengths of disorder and dc drive.Comment: 4 pages, 4 postscript figure
    • …
    corecore