4 research outputs found

    eBay users form stable groups of common interest

    Full text link
    Market segmentation of an online auction site is studied by analyzing the users' bidding behavior. The distribution of user activity is investigated and a network of bidders connected by common interest in individual articles is constructed. The network's cluster structure corresponds to the main user groups according to common interest, exhibiting hierarchy and overlap. Key feature of the analysis is its independence of any similarity measure between the articles offered on eBay, as such a measure would only introduce bias in the analysis. Results are compared to null models based on random networks and clusters are validated and interpreted using the taxonomic classifications of eBay categories. We find clear-cut and coherent interest profiles for the bidders in each cluster. The interest profiles of bidder groups are compared to the classification of articles actually bought by these users during the time span 6-9 months after the initial grouping. The interest profiles discovered remain stable, indicating typical interest profiles in society. Our results show how network theory can be applied successfully to problems of market segmentation and sociological milieu studies with sparse, high dimensional data.Comment: Major revision of the manuscript. Methodological improvements and inclusion of analysis of temporal development of user interests. 19 pages, 12 figures, 5 table

    Analysis of a large-scale weighted network of one-to-one human communication

    Get PDF
    We construct a connected network of 3.9 million nodes from mobile phone call records, which can be regarded as a proxy for the underlying human communication network at the societal level. We assign two weights on each edge to reflect the strength of social interaction, which are the aggregate call duration and the cumulative number of calls placed between the individuals over a period of 18 weeks. We present a detailed analysis of this weighted network by examining its degree, strength, and weight distributions, as well as its topological assortativity and weighted assortativity, clustering and weighted clustering, together with correlations between these quantities. We give an account of motif intensity and coherence distributions and compare them to a randomized reference system. We also use the concept of link overlap to measure the number of common neighbors any two adjacent nodes have, which serves as a useful local measure for identifying the interconnectedness of communities. We report a positive correlation between the overlap and weight of a link, thus providing strong quantitative evidence for the weak ties hypothesis, a central concept in social network analysis. The percolation properties of the network are found to depend on the type and order of removed links, and they can help understand how the local structure of the network manifests itself at the global level. We hope that our results will contribute to modeling weighted large-scale social networks, and believe that the systematic approach followed here can be adopted to study other weighted networks.Comment: 25 pages, 17 figures, 2 table
    corecore